Choquet boundary for some subspaces of continuous functions

Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary.

Authors

  • Laura HODIȘ Technical University of Cluj-Napoca Department of Mathematics 28, Memorandumului Street 400114 Cluj-Napoca, Romania, e-mail: mesaros.laura@gmail.com
  • Alexandra MĂDUȚA Technical University of Cluj-Napoca Department of Mathematics 28, Memorandumului Street 400114 Cluj-Napoca, Romania, e-mail: alexandra91@yahoo.com

DOI:

https://doi.org/10.24193/subbmath.2019.3.05

Keywords:

Choquet boundary, parabolic functions, linearly separating subspaces, peak points.

Abstract

We investigate the Choquet boundary for subspaces of parabolic functions and for linearly separating subspaces of continuous functions. The relation of the Choquet boundary with the set of peak points is also investigated.

Mathematics Subject Classification (2010): 46A55.

References

Alfsen, E., Compact Convex Sets and Boundary Integrals, Springer 1971.

Altomare, F., Campiti, M., Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin, New York, 1994.

Altomare, F., Cappelletti Montano, M., Leonessa, V., Ra¸sa, I., Markov Operators, Positive Semigroups and Approximation Processes, De Gruyter Studies in Mathematics, 61, 2014.

Bauer, H., Silovscher rand und Dirichletsches problem, Ann. Inst. Fourier, 11(1961), 89- 136.

Bauer, H., Leha, G., Papadopoulou, S., Determination of Korovkin closures, Math.Z., 168(1979), 263-274.

Boboc, N., Bucur, Gh., Conuri Convexe de Func¸tii Continue pe Spa¸tii Compacte, Ed. Acad. RSR, Bucure¸sti, 1976.

Bunce, U.W., Zame, W.R., Boundaries for subspaces of C(K), Quart. J. Math. Oxford, 25(1974), 227-234.

Herv´e, M., Sur les representations int´egrales a l’aide des points extremaux dans un ensemble compact convexe metrisable, C.R. Acad. Sci, Paris, 253(1961), 366-368.

Micchelli, C.A., Convergence of positive linear operators on C(X), J. Approx. Theory, 13(1975), 305-315.

Phelps, R.R., Lectures on Choquet’s theorem, Lecture Notes in Mathematics 1757, Springer-Verlag Berlin Heidelberg, 2001.

Ra¸sa, I., On some results of C.A. Micchelli, Anal. Num´er. Th´eor. Approx., 9(1980), 125-127.

Ra¸sa, I., Sets on which concave functions are affine and Korovkin closures, Anal. Num´er. Th´eor. Approx., 15(1986), no. 2, 163-165.

Rogalski, M., Espaces de Banach r´eticul´es et probl´eme de Dirichlet, Publ. Math. D’Orsay, Math´ematique, 425, 1968-1969.

Watanabe, H., The Choquet boundary and the integral representation, Nat. Sci. Rep. Ochanomizu Univ., 31(1980), 23-33.

Downloads

Published

2019-09-30

How to Cite

HODIȘ, L., & MĂDUȚA, A. (2019). Choquet boundary for some subspaces of continuous functions: Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 64(3), 339–347. https://doi.org/10.24193/subbmath.2019.3.05

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.