Iterates of positive linear operators on Bauer simplices

Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary.

Authors

  • Mădălina DANCS Technical University of Cluj-Napoca Department of Mathematics 28, Memorandumului Street 400114 Cluj-Napoca, Romania, e-mail: dancs_madalina@yahoo.com
  • Sever HODIȘ Technical University of Cluj-Napoca Department of Mathematics 28, Memorandumului Street 400114 Cluj-Napoca, Romania, e-mail: hodissever@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2019.3.04

Keywords:

Bauer simplex, positive linear operators, iterates, convergence.

Abstract

We consider positive linear operators acting on C(K), where K is a metrizable Bauer simplex. For such an operator L we investigate the limit of the iterates Lm, when m → ∞. Qualitative results and rates of convergence are obtained. The general results are illustrated by examples involving classical operators.

Mathematics Subject Classification (2010): 41A36, 46A55.

References

Agratini, O., On the iterates of a class of summation-type linear positive operators, Comput. Math. Appl., 55(2008), 1178-1180.

Agratini, O., On some Bernstein type operators: iterates and generalizations, East J. Approx., 9(2003), 415-426.

Agratini, O., Rus, I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolin., 44(2003), no. 3, 555-563.

Agratini, O., Rus, I.A., Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Anal. Forum, 8(2003), 159-168.

Alfsen, E., Compact Convex Sets and Boundary Integrals, Springer 1971.

Altomare, F., On some convergence criteria for nets of positive operators on continuous function spaces, J. Math. Anal. Appl., 398(2013), 542-552.

Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and its Applications, Walter de Gruyter, Berlin, New York, 1994.

Altomare, F., Cappelletti Montano, M., Leonessa, V., Ra¸sa, I., Markov Operators, Positive Semigroups and Approximation Processes, De Gruyter Studies in Mathematics, 61, 2014.

Badea, C., Bernstein polynomials and operator theory, Results Math., 53(2009), 229-236. [10] Birou, M., New rates of convergence for the iterates of some positive linear operators, Mediterr. J. Math., (2017), 14-129.

Gal, S.G., Voronovskaja’s theorem and iterations for complex Bernstein polynomials in compact disks, Mediterr. J. Math., 5(3)(2008), 253-272.

Gavrea, I., Ivan, M., On the iterates of positive linear operators, J. Approx. Theory, 163(2011), 1076-1079.

Gavrea, I., Ivan, M., On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372(2010), 366-368.

Gavrea, I., Ivan, M., The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24(12)(2011), 2068-2071.

Gavrea, I., Ivan, M., Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal., (2011), art. ID 670509.

Gonska, H., Kacs´o, D., Pi¸tul, P., The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1(2006), 403-423.

Gonska, H., Ra¸sa, I., The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111(2006), 119-130.

Gonska, H., Ra¸sa, I., On infinite products of positive linear operators reproducing linear functions, Positivity, 17(2013), no. 1, 67-79.

Goodman, T.N.T., Sharma, A., A Bernstein type operator on the simplex, Math. Balkanica, 5(1991), 129-145.

Mahmudov, N.I., Asymptotic properties of iterates of certain positive linear operators, Math. Comput. Model., 57(2013), 1480-1488.

Mahmudov, N.I., Asymptotic properties of powers of linear positive operators which preserve e2, Comput. Math. Appl., 62(2011), 4568-4575.

Mahmudov, N.I., Korovkin type theorem for iterates of certain positive linear operators, arXiv:1103.2918v1.

Micchelli, C.A., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8(1973), 1-18.

Ostrovska, S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 123(2003), 232-255.

Phelps, R.R., Lectures on Choquet’s Theorem, Springer, 2001.

Ra¸sa, I., Sets on which concave functions are affine and Korovkin closures, Anal. Num´er. Th´eor. Approx., 15(1986), no. 2, 163-165.

Ra¸sa, I., On some results of C. A. Micchelli, Anal. Num´er. Th´eor. Approx., 9(1980), no. 1, 125-127.

Ra¸sa, I., C0-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo (2) Suppl., 82(2010), 123-142.

Ra¸sa, I., Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx., 1(2009), no. 2, 195-204.

Rus, I.A., Picard operators and applications, Sci. Math. Japon., 58(2003), no. 1, 191-219. [31] Rus, I.A., Iterates of Stancu operators, via contraction principle, Stud. Univ. Babe¸s-Bolyai Math., 47(2002), no. 4, 101-104.

Rus, I.A., Iterates of Stancu operators (via fixed point principles) revisited, Fixed Point Theory, 11(2010), no. 2, 369-374.

Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292(2004), 259-261.

Sauer, T., The Genuine Bernstein-Durrmeyer operator on a simplex, Results Math., 26(1994), no. 1-2, 99-130.

Waldron, Sh., A generalised beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122(2003), 141-150.

Downloads

Published

2019-09-30

How to Cite

DANCS, M., & HODIȘ, S. (2019). Iterates of positive linear operators on Bauer simplices: Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 64(3), 331–338. https://doi.org/10.24193/subbmath.2019.3.04

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.