Parameter estimations for linear parabolic fractional SPDEs with jumps
DOI:
https://doi.org/10.24193/subbmath.2019.2.12Keywords:
Parameter estimation, SPDE, cylindrical fractional Brownian motion, cylindrical Poisson process.Abstract
We give an unbiased and consistent estimator for the drift coefficient of a linear parabolic stochastic partial differential equation driven by a multiplicative cylindrical fractional Brownian motion with Hurst index 1/2 < h < 1 and a cylindrical centered Poisson process, if the observations of the solution process are given in discrete time points. The presented method is based on mean square estimations.
Mathematics Subject Classification (2010): 60H15, 62F12, 60G22.
References
Bertin, K., Torres, S., Tudor, C. A., Maximum-likelihood estimators and random walks in long memory models, Statistics, 45(2011), no. 4, 361-374.
Cialenco, I., Parameter estimation for SPDEs with multiplicative fractional noise, Stoch. Dyn., 10(2010), no. 4, 561-576.
Gichman, I.I., Skorochod, A.W., Stochastische Differentialgleichungen, Akademie- Verlag, 1971.
Kozachenko, Y., Melnikov, A., Mishura, Y., On drift parameter estimation in models with fractional Brownian motion, Statistics, 49(2015), no. 1, 35-62.
Long, H., Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations, Acta Math. Sci. Ser. B (Engl. Ed.), 30(2010), no. 3, 645-663.
Lototsky, S.V., Rozovsky, B.L., Stochastic partial differential equations, Springer, 2017. [7] Lueddeckens, J., Fraktale stochastische Integralgleichungen im White-Noise-Kalku¨l, Dissertation Martin-Luther-Universit¨at Halle-Wittenberg, April 2017.
Maslowski, B., Tudor, C.A., Drift parameter estimation for infinite-dimensional fractional Ornstein–Uhlenbeck process, Bull. Sci. Math., 137(2013), no. 7, 880-901.
Nualart, D., Stochastic calculus with respect to fractional Brownian motion, Ann. Fac. Sci. Toulouse Math. (6), 15(2006), no. 1, 63-78.
Protter, Ph., Stochastic Integration and Differential Equations, Springer, 1990.
Xiao, W., Zhang, W., Zhang, X., Parameter identification for discretely observed geometric fractional Brownian motion, J. Stat. Comput. Simul., 85(2015), no. 2, 269-283.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.