Stone-Weierstrass theorems for random functions
DOI:
https://doi.org/10.24193/subbmath.2019.2.10Keywords:
Stone-Weierstrass theorem, approximation of random functions, stochastic convergence, random polynomial.Abstract
We present several generalizations of the Stone-Weierstrass theorem concerning the approximation of continuous functions on a compact set by using functions from a subalgebra to the case of random functions and random variables in the space of continuous functions. The continuity of the random functions is allowed to be only with respect to a metric, hence including the case of stochastically continuous random functions. These results could be cornerstones for the general theory of approximation for random functions.
Mathematics Subject Classification (2010): 41A65, 60G07, 60B11.
References
Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York, 1968.
Bogachev, V.I., Measure Theory, Springer, Berlin, 2007.
Dieudonn´e, D., Foundations of Modern Analysis, Academic Press, New York, 1969. [4] Dugu´e, D., Trait´e de Statistique Th´eoretique et Appliqu´ee, Masson, Paris, 1958.
Onicescu, O., Istra˘¸tescu, V.I., Approximation theorems for random functions, Rend. Mat. Serie VI, 8(1975), 65-81.
Prolla, J.B., Weierstrass-Stone, the Theorem, Lang, Frankfurt am Main, 1993.
Rolewicz, S., Metric Linear Spaces, D. Reidel Publishing Company, Dordrecht, 1984. [8] Rudin, W., Real and Complex Analysis, McGraw-Hill Book Company, New York, 1970. [9] Rudin, W., Functional Analysis, McGraw-Hill Book Company, New York, 1973.
Ryabykh, V.G., Tokmakova,N.N., Yablonski˘i, A.Ya., Approksimatsiya slucha˘inykh funktsi˘i (Approximation of random functions), In: Matematicheski˘i analiz i ego prilozheniya, Rostov na Donu, (1985), 131–135.
Timofte, V., Stone-Weierstrass theorems revisited, J. Approx. Theory, 136(2005), 45-59.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.