A generalization of Bernstein-Durrmeyer operators on hypercubes by means of an arbitrary measure
DOI:
https://doi.org/10.24193/subbmath.2019.2.09Keywords:
Bernstein operator, Bernstein-Durrmeyer operator, approximation process, asymptotic formula.Abstract
In this paper we introduce and study a sequence of Bernstein- Durrmeyer type operators (Mn,µ)n≥1, acting on spaces of continuous or inte- grable functions on the multi-dimensional hypercube Qd of Rd (d ≥ 1), defined by means of an arbitrary measure µ. We investigate their approximation proper- ties both in the space of all continuous functions and in Lp-spaces with respect to µ, also furnishing some estimates of the rate of convergence. Further, we prove an asymptotic formula for the Mn,µ’s. The paper ends with a concrete example.
Mathematics Subject Classification (2010): 41A36, 41A63, 41A10.
References
Albanese, A.A., Campiti, M., Mangino, E.M., Regularity properties of semigroups generated by some Fleming-Viot type operators, J. Math. Anal. Appl., 335(2007), 1259-1273.
Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994.
Altomare, F., Cappelletti Montano, M., Leonessa, V., On the positive semigroups generated by Fleming-Viot type differential operators, Comm. Pure Appl. Anal., 18(1)(2019), 323-340.
Altomare, F., Cappelletti Montano, M., Leonessa, V., Ra¸sa, I., Markov Operators, Positive Semigroups and Approximation Processes, de Gruyter Studies in Mathematics, 61, Walter de Gruyter GmbH, Berlin/Boston, 2014.
Bauer, H., Probability Theory, de Gruyter Studies in Mathematics, 23, Walter de Gruyter & Co., Berlin, 1996.
Berdysheva, E.E., Uniform convergence of Bernstein-Durrmeyer operators with respect to arbitrary measure, J. Math. Anal. Appl., 394(2012), 324-336.
Berdysheva, E.E., Bernstein-Durrmeyer operators with respect to arbitrary measure, II: Pointwise convergence, J. Math. Anal. Appl., 418(2014), 734-752.
Berdysheva, E.E., Jetter, K., Multivariate Bernstein Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162(2010), 576-598.
Berdysheva, E.E., Li, B.Z., On Lp-convergence of Bernstein Durrmeyer operators with respect to arbitrary measure, Publ. Inst. Math., Beograd (N.S.), 96(110)(2014), 23-29.
Berens, H., De Vore, R., Quantitative Korovkin Theorems for positive linear operators on Lp-spaces, Trans. Amer. Math. Soc., 245(1978), 349-361.
Berens, H., Xu, Y., On Bernstein-Durrmeyer polynomials with Jacobi weights, in: C.K. Chui (ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46.
Derriennic, M.M., Sur l’approximation de fonctions int´egrables sur [0, 1] par des polynoˆmes de Bernstein modifies, J. Approx. Theory, 31(1981), 325-343.
Ditzian, Z., Multidimensional Jabobi-type Bernstein-Durrmeyer operators, Acta Sci. Math., Szeged, 60(1995), 225-243.
Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer-Verlag, New York, 1987.
Durrmeyer, J.L., Une formule d’inversion de la transform´ee de Laplace: applications a` la th´eorie des moments, Th`ese de 3e cycle, Facult´e des Sciences de l’Universit´e de Paris, 1967.
Lorentz, G.G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953. [17] Li, B.Z., Approximation by multivariate Bernstein-Durrmeyer operators and learning rates of least-squares regularized regression with multivariate polynomial kernels, J. Approx. Theory, 173(2013), 33-55.
Lupa¸s, A., Die Folge der Betaoperatoren, Dissertation, Universit¨at Stuttgart, 1972. [19] P˘alta˘nea, R., Sur un op´erateur polynomial d´efini sur l’ensemble des fonctions int´egrables, Univ. Babe¸s-Bolyai, Cluj-Napoca, 83(1983), no. 2, 101-106.
Royden, H.L., Real Analysis, third ed., Macmillan Publishing Company, New York, 1988. [21] Vladislav, T., Ra¸sa, I., Analiza˘ Numerica˘, Aproximare, Problema lui Cauchy Abstracta˘, Proiectorii Altomare, Ed. Tehnic˘a, Bucure¸sti, 1999.
Waldron, Sh., A generalization of beta integral and the limit of Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122(2003), 141-150.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.