Some approximation properties of Urysohn type nonlinear operators

Authors

  • Harun KARSLI Bolu Abant Izzet Baysal University Faculty of Science and Arts Department of Mathematics 14030 Golkoy Bolu, Turkey, e-mail: karsli_h@ibu.edu.tr https://orcid.org/0000-0002-3641-9052

DOI:

https://doi.org/10.24193/subbmath.2019.2.05

Keywords:

Urysohn integral operators, Stancu operator, two dimensional nonlinear Stancu operators, Urysohn type nonlinear Stancu operators.

Abstract

The central issue of this paper is to continue the investigation of convergence properties of Urysohn type operators. By using Urysohn type operators we will extend the theory of interpolation to functionals and operators. In details, the present paper centers around Urysohn type nonlinear counterpart of the two dimensional Stancu operators defined on a triangle. We construct our nonlinear operators by defining a nonlinear forms of the kernel functions. Afterwards, we investigate the convergence problem for these operators.

Mathematics Subject Classification (2010): 41A25, 41A35, 47G10, 47H30.

References

Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter and Co., Berlin, 1994.

Bardaro, C., Karsli, H., Vinti, G., Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems, Appl. Anal., 90(2011), no 3-4, 463–474.

Bardaro, C., Mantellini, I., On the reconstruction of functions by means of nonlinear discrete operators, J. Concr. Appl. Math., 1(2003), no. 4, 273–285.

Bardaro, C., Mantellini, I., Approximation properties in abstract modular spaces for a class of general sampling-type operators, Appl. Anal., 85(2006), no. 4, 383–413.

Bardaro, C., Musielak, J., Vinti, G., Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, xii + 201 pp., 2003.

Bardaro, C., Vinti, G., Urysohn integral operators with homogeneous kernel: approximation properties in modular spaces, Comment. Math. (Prace Mat.), 42(2002), no. 2, 145–182.

Bernstein S.N., Demonstration du Th´eoreme de Weierstrass fond´ee sur le calcul des probabilit´es, Comm. Soc. Math. Kharkow, 13(1912/13), 1-2.

Butzer, P.L., On Bernstein Polynomials, Ph.D. Thesis, University of Toronto, 1951. [9] Butzer, P.L., On two dimensional Bernstein polynomials, Canad. J. Math., 5(1953), 107–113.

Butzer, P.L., Nessel, R.J., Fourier Analysis and Approximation, Vol. 1, Academic Press, New York, London, 1971.

Demkiv, I.I., On Approximation of the Urysohn operator by Bernstein type operator polynomials, Visn. L’viv. Univ., Ser. Prykl. Mat. Inform., (2000), no. 2, 26-30.

Karsli, H., Approximation by Urysohn type Meyer-Ko¨nig and Zeller operators to Urysohn integral operators, Results Math., 72(2017), no. 3, 1571–1583.

Karsli, H., Approximation Results for Urysohn Type Nonlinear Bernstein Operators, Advances in Summability and Approximation Theory, Book Chapter, Springer Nature Singapore Pte Ltd., 223-241, 2018.

Karsli, H., Voronovskaya-type theorems for Urysohn type nonlinear Bernstein operators, Mathematical Methods in the Applied Sciences, (2018), accepted.

Karsli, H., Approximation results for Urysohn type two dimensional nonlinear Bernstein operators, Const. Math. Anal., 1(2018), no. 1, 45-57.

Karsli, H., Altin, H.E., A Voronovskaya-type theorem for a certain nonlinear Bernstein operators, Stud. Univ. Babe¸s-Bolyai Math., 60(2015), no. 2, 249–258.

Karsli, H., Tiryaki, I.U., Altin, H.E., On convergence of certain nonlinear Bernstein operators, Filomat, 30(2016), no. 1, 141–155.

Karsli, H., Tiryaki I.U., Altin H.E., Some approximation properties of a certain nonlinear Bernstein operators, Filomat, 28(6)(2014), 1295-1305.

Lorentz, G.G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953.

Lupa¸s, L., Lupa¸s, A., Polynomials of binomial type and approximation operators, Studia Univ. Babe¸s-Bolyai, Mathematica, 32(1987), 61-69.

Makarov, V.L., Demkiv, I.I., Approximation of the Urysohn operator by operator polynomials of Stancu type, Ukrainian Math Journal, 64(2012), no. 3, 356-386.

Musielak, J., On some approximation problems in modular spaces, In: Constructive Function Theory 1981, (Proc. Int. Conf., Varna, June 1-5, 1981), 455-461, Publ. House Bulgarian Acad. Sci., Sofia 1983.

Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(1968), 1173–1194.

Stancu, D.D., A new class of uniform approximating polynomial operators in two and several variables, Proceedings of the Conference on the Constructive Theory of Functions (Approximation Theory) (Budapest, 1969), 443-455, Akademiai Kiado, Budapest, 1972.

Urysohn, P., On a type of nonlinear integral equation, Mat. Sb., 31(1924), 236–255. [26] Zabreiko, P.P., Koshelev, A.I., Krasnosel’skii, M.A., Mikhlin, S.G., Rakovscik, L.S., Stetsenko, V.Ja., Integral Equations: A Reference Text, Noordhoff Int. Publ., Leyden, 1975.

Downloads

Published

2019-06-30

How to Cite

KARSLI, H. (2019). Some approximation properties of Urysohn type nonlinear operators. Studia Universitatis Babeș-Bolyai Mathematica, 64(2), 183–196. https://doi.org/10.24193/subbmath.2019.2.05

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.