Quantitative results for the convergence of the iterates of some King type operators

Authors

  • Marius Mihai BIROU Technical University of Cluj Napoca Faculty of Automatics and Computer Sciences 28, Memorandumului Street, 400114 Cluj-Napoca, Romania, e-mail: Marius.Birou@math.utcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2019.2.04

Keywords:

King type operators, q -operators, convergence, modulus of smoothness.

Abstract

In this article we construct three q -King type operators which fix the functions e0 and e2 +αe1, α > 0. We study the rates of convergence for the iterates of these operators using the first and the second order modulus of continuity. We show that the convergence is faster in the case of q operators (q < 1) than in the classical case (q = 1).

Mathematics Subject Classification (2010): 41A17, 41A25, 41A36.

References

Altomare, F., Cappelletti Montano, M., Leonessa, V., Rasa, I., Markov Operators, Positive Semigroups and Approximation Process, De Gruyter Stud. Math., 61(2015).

Birou, M.M., New rates of convergence for the iterates of some positive linear operators, Mediterr. J. Math., 14(2017), no. 3, Art. no. UNSP 129.

Birou, M.M., New quantitative results for the convergence of the iterates of some positive linear operators, Positivity, 32(2019), no. 2, 315-326.

Cardenas-Morales, D., Garrancho, P., Mun˜oz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182(2006), no. 2, 1615-1622.

Gavrea, I., Ivan, M., Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal., 2011, Art. ID 670509, 11 pp.

Gonska, H., Ra¸sa, I., On infinite products of positive linear operators reproducing linear functions, Positivity, 17(2013), 67-79.

King, J.P, Positive linear operators which preserve x2, Acta Math. Hungar., 99(2003), no. 3, 203-208.

Mahmudov, N.I., Asymptotic properties of powers of linear positive operators which preserve e2, Comput. Math. Appl., 62(2011), 4568-4575.

Mahmudov, N.I., Sabancigil, P., On genuine q-Bernstein-Durrmeyer operators, Publ. Math. Debrecen, 76(2010), no. 4, 221-229.

Nowak, G., Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350(2009), 50-55.

Philips, G.M., Bernstein polynomial based on q-integers, Ann. Numer. Math., 4(1997), 511-518.

Ra¸sa, I., C0-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo (2), 82(2010), 1-20.

Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(1968), no. 8, 1173-1194.

Downloads

Published

2019-06-30

How to Cite

BIROU, M. M. (2019). Quantitative results for the convergence of the iterates of some King type operators. Studia Universitatis Babeș-Bolyai Mathematica, 64(2), 173–182. https://doi.org/10.24193/subbmath.2019.2.04

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.