Quantitative results for the convergence of the iterates of some King type operators
DOI:
https://doi.org/10.24193/subbmath.2019.2.04Keywords:
King type operators, q -operators, convergence, modulus of smoothness.Abstract
In this article we construct three q -King type operators which fix the functions e0 and e2 +αe1, α > 0. We study the rates of convergence for the iterates of these operators using the first and the second order modulus of continuity. We show that the convergence is faster in the case of q operators (q < 1) than in the classical case (q = 1).
Mathematics Subject Classification (2010): 41A17, 41A25, 41A36.
References
Altomare, F., Cappelletti Montano, M., Leonessa, V., Rasa, I., Markov Operators, Positive Semigroups and Approximation Process, De Gruyter Stud. Math., 61(2015).
Birou, M.M., New rates of convergence for the iterates of some positive linear operators, Mediterr. J. Math., 14(2017), no. 3, Art. no. UNSP 129.
Birou, M.M., New quantitative results for the convergence of the iterates of some positive linear operators, Positivity, 32(2019), no. 2, 315-326.
Cardenas-Morales, D., Garrancho, P., Mun˜oz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math. Comput., 182(2006), no. 2, 1615-1622.
Gavrea, I., Ivan, M., Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal., 2011, Art. ID 670509, 11 pp.
Gonska, H., Ra¸sa, I., On infinite products of positive linear operators reproducing linear functions, Positivity, 17(2013), 67-79.
King, J.P, Positive linear operators which preserve x2, Acta Math. Hungar., 99(2003), no. 3, 203-208.
Mahmudov, N.I., Asymptotic properties of powers of linear positive operators which preserve e2, Comput. Math. Appl., 62(2011), 4568-4575.
Mahmudov, N.I., Sabancigil, P., On genuine q-Bernstein-Durrmeyer operators, Publ. Math. Debrecen, 76(2010), no. 4, 221-229.
Nowak, G., Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350(2009), 50-55.
Philips, G.M., Bernstein polynomial based on q-integers, Ann. Numer. Math., 4(1997), 511-518.
Ra¸sa, I., C0-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo (2), 82(2010), 1-20.
Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(1968), no. 8, 1173-1194.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.