Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping

Authors

  • Marcelo M. CAVALCANTI Department of Mathematics, State University of Maringa´ 87020-900, Maringa´, PR, Brazil, e-mail: mmcavalcanti@uem.br
  • Wellington J. CORRÊA Academic Department of Mathematics, Federal Technological University of Paraná Campuses Campo Mouraõ, 87301-899, Campo Mouraõ, PR, Brazil, e-mail: wcorrea@utfpr.edu.br
  • Mauricio A. SEPÚLVEDA C. CI2 MA and Departamento de Ingenierıa Matemática Facultad de Ciencias Fısicas y Matemáticas, Universidad de Concepción Casilla 160-C, Concepción, Chile, e-mail: mauricio@ing-mat.udec.cl
  • Rodrigo VÉJAR ASEM CI2 MA and Departamento de Ingenierıa Matemática Facultad de Ciencias Fısicas y Matemáticas, Universidad de Concepción Casilla 160-C, Concepción, Chile, e-mail: rodrigovejar@ing-mat.udec.cl https://orcid.org/0000-0001-8730-9518

DOI:

https://doi.org/10.24193/subbmath.2019.2.03

Keywords:

High order, nonlinear Schrödinger equation, localized damping, dissipation, finite difference methods.

Abstract

In this work we present a finite difference scheme used to solve a High order Nonlinear Schrödinger Equation. These equations can model the propagation of solitons travelling in fiber optics ([3], [11]). The scheme is designed to preserve the numerical energy at L2 level, and control the energy at H1 level for a suitable choose on the equation’s parameters. We show numerical results dis- playing conservation properties of the schemes using solitons as initial conditions.

Mathematics Subject Classification (2010): 35Q55, 65-06, 65M06, 65Z05.

References

Ablowitz, M.J., Segur, H., Solitons and the Inverse Scattering Transform, SIAM, 1981.

Alves, M., Sepu´lveda, M., Vera, O., Smoothing properties for the higher-order nonlinear Schr¨odinger equation with constant coefficients, Nonlinear Anal., 71(2009), 948-966.

Anderson, D., Lisak, M., Nonlinear asymmetric self-phase modulation and selfsteepening of pulses in long optical waveguides, Phys. Rev. A, 27(1983), no. 3, 1393-1398.

Carvajal, X., Sharp global well-posedness for a higher order Schr¨odinger equation, J. Fourier Anal. Appl., 12(2006), no. 1, 53-70.

Chen, H.H., Lee, Y.C., Liu, C.S., Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 20(1979), 490-492.

Delfour, M., Fortin, M., Payre, G., Finite-difference solutions of a non-linear Schr¨odinger equation, J. Comput. Phys., 44(1981), 277-288.

Fibich, G., Adiabatic law for self-focusing of optical beams, Opt. Lett., 21(1996), no. 21, 1735-1737.

Furihata, D., Matsuo, T., Discrete Variational Derivative Method: A Structure- Preserving Numerical Method for Partial Differential Equations, Chapman & Hall/CRC, 2011.

Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14(1973), no. 7, 805-809.

Kivshar, Y., Malomed, B., Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., 61(1989), no. 4, 763-915.

Kodama, Y., Hasegawa, A., Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron., QE-23(1989), 510-524.

Korteweg, D.J., De Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 539(1895), 422-443.

Lele, S.K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103(1992), 16-42.

Li, B., Exact soliton solutions for the higher-order nonlinear Schr¨odinger equation, Int. J. Modern Phys. C, 16(2005), no. 8, 1225-1237.

Pazoto, A.F., Sepu´lveda, M., Vera, O., Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping, Numer. Math., 116(2010), 317-356.

Perel’man, T.L., Fridman, A.Kh., El’yashevich, M.M., A modified Korteweg-de Vries equation in electrohydrodynamics, Sov. Phys. JETP, 39(1974), no. 4, 643-646.

Potasek, M.J., Tabor, M., Exact solutions for an extended nonlinear Schr¨odinger equation, Phys. Lett. A, 154(1991), no. 9, 449-452.

Sasa, N., Satsuma, J., New-type of soliton solutions for a higher-order nonlinear Schr¨odinger equation, J. Phys. Soc. Jpn., 60(1991), no. 2, 409-417.

Smadi, M., Bahloul, D., A compact split step Pad´e scheme for higher-order nonlinear Schr¨odinger equation (HNLS) with power law nonlinearity and fourth order dispersion, Comput. Phys. Commun., 182(2011), 366-371.

Smadi, M., Bahloul, D., Dynamic of HNLS solitons using compact split step Pad´e scheme, J. Phys. Conf. Ser., 574(2015).

Takaoka, H., Well-posedness for the one-dimensional nonlinear Schr¨odinger equation with the derivative nonlinearity, Adv. Differential Equations, 4(1999), no. 4, 561-580.

Takaoka, H., Well-posedness for the higher order nonlinear Schr¨odinger equation, Adv. Math. Sci. Appl., 10(2000), no. 1, 149-171.

Zakharov, V.E., Shabat, A.B., Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34(1972), no. 1, 62-69.

Downloads

Published

2019-06-30

How to Cite

CAVALCANTI, M. M., CORRÊA, W. J., SEPÚLVEDA C., M. A., & VÉJAR ASEM, R. (2019). Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping. Studia Universitatis Babeș-Bolyai Mathematica, 64(2), 161–172. https://doi.org/10.24193/subbmath.2019.2.03

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.