Subclasses of analytic functions of complex order defined by q-derivative operator

Authors

DOI:

https://doi.org/10.24193/subbmath.2019.1.07

Keywords:

Analytic functions, univalent functions, Hadamard product (or convolution), subordination between analytic functions, q-derivative operator.

Abstract

Using the q-derivative operator in conjunction with the principle of subordination between analytic functions, we introduce two subclasses of analytic functions in the open unit disk U. We investigate convolution properties and coefficient estimates for these subclasses.

Mathematics Subject Classification (2010): 30C45, 30C50.

References

Abu-Risha, M.H., Annaby, M.H., Ismail, M.E.H., Mansour, Z.S., Linear q-difference equations, Z. Anal. Anwend., 26(2007), 481-494.

Aouf, M.K., Bounded spiral-like functions with fixed second coefficient, Int. J. Math. Math. Sci., 12(1989), 113-118.

Aouf, M.K., Darwish, H.E., Attiya, A.A., Coefficient estimates for certain classes of analytic functions, Punjab Univ. J. Math., 33(2000), 51-64.

Aouf, M.K., Darwish, H.E., Attiya, A.A., Coefficients estimates for certain class of analytic functions with complex order, Math. Sci. Res. Hot-Line, 2(11)(1998), 1-13.

Aouf, M.K., Mostafa, A.O., Zayed, H.M., Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., 2015(2015), Art. ID 973613, 6 pages.

Bhoosnurmath, S.S., Devadas, M.V., Subclasses of spirallike functions defined by subordination, J. Anal., 4(1996), 173-183.

Bhoosnurmath, S.S., Devadas, M.V., Subclasses of spirallike functions defined by Ruschweyh derivatives, Tamkang J. Math., 28(1997), 59-65.

Dashrath, Shukla, S.L., Coefficient estimates for a subclass of spirallike functions, Indian J. Pure Appl. Math., 14(1983), 431-439.

Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

Jakubowski, Z.J., On the coefficients of starlike functions of some classes, Ann. Polon. Math., 26(1972), 305-313.

Kac, V.G., Cheung, P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.

Kulshrestha, P.K., Bounded Robertson functions, Rend. Mat. (Ser. 6), 9(1976), 137-150.

Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 255, Marcel Dekker, New York, 2000.

Nasr, M.A., Aouf, M.K., Characterizations for convex functions and starlike functions of complex order in U = {z : |z| < 1}, Bull. Fac. Sci. Assiut Univ., 11(1982), 117-121.

Nasr, M.A., Aouf, M.K., On convex functions of complex order, Bull. Fac. Sci. Mansoura Univ., 9(1982), 565-582.

Nasr, M.A., Aouf, M.K., Bounded starlike functions of complex order, Proc. Indian Acad. Sci. Math. Sci., 92(1983), 97-102.

Nasr, M.A., Aouf, M.K., Bounded convex functions of complex order, Bull. Fac. Sci. Mansoura Univ., 10(1983), 513-527.

Nasr, M.A., Aouf, M.K., Starlike function of complex order, J. Natur. Sci. Math., 25(1985), 1-12.

Rajkovi´c, P.M., Marinkovi´c, S.D., Stankovi´c, M.S., Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1(2007), 311-323.

Seoudy, T.M., Aouf, M.K., Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., 2014(2014), Art. ID 846719, 1-7.

Sohi, N.S., Singh, L.P., A class of bounded starlike functions of complex order, Indian J. Math., 33(1991), 29-35.

Srivastava, H.M., Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.

Srivastava, H.M., Aouf, M.K., Mostafa, A.O., Zayed, H.M., Certain subordination- preserving family of integral operators associated with p valent functions, Appl. Math. Inf. Sci., 11(2017), no. 4, 951-960.

Srivastava, H.M., Bansal, D., Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1(2017), no. 1, 61-69.

Srivastava, H.M., Owa, S. (eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992. [26] Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math., 15(2011), 2377-2386.

Downloads

Published

2019-03-20

How to Cite

SRIVASTAVA, R., & ZAYED, H. M. (2019). Subclasses of analytic functions of complex order defined by q-derivative operator. Studia Universitatis Babeș-Bolyai Mathematica, 64(1), 71–80. https://doi.org/10.24193/subbmath.2019.1.07

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.