A topological representation of double Boolean lattices

Authors

  • Brigitte E. BRECKNER Babe¸s-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: brigitte@math.ubbcluj.ro
  • Christian SĂCĂREA Babe¸s-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: csacarea@math.ubbcluj.ro https://orcid.org/0000-0003-3295-9518

DOI:

https://doi.org/10.24193/subbmath.2019.1.02

Keywords:

Formal concept analysis, double boolean algebra, topological context.

Abstract

Boolean Concept Logic has been introduced by R. Wille as a mathematical theory based on Formal Concept Analysis. Concept lattices are extended with two new operations, negation and opposition which then lead to algebras of protoconcepts which are equationally equivalent to double Boolean algebras. In this paper, we provide a topological representation for double Boolean algebras based on the so-called DB-topological contexts. A double Boolean algebra is then represented as the algebra of clopen protoconcepts of some DB-topological context.

Mathematics Subject Classification (2010): 18B35, 54B30, 68T30.

References

Breckner, B.E., S˘aca˘rea, C., Some Categorical Aspects in Topological Formal Concept Analysis, Mathematica, 59(2017), no. 1-2, 15-31.

Ganter, B., Wille, R., Formal Concept Analysis – Mathematical Foundations, Springer, 1999.

Hartung, G., A topological representation of lattices, Algebra Universalis, 29 (1992), 273-299.

Hartung, G., An Extended Duality for Lattices, General Algebra and Applications, Heldermann-Verlag, Berlin, 1993, 126-142.

Hartung, G., Kamara, M., S˘aca˘rea, C., A topological representation for polarity lattices, Acta Math. Univ. Comenian. (N.S.), 68(1999), no. 1, 49-70.

Herrmann, Ch., Luksch, P., Skorsky, M., Wille, R., Algebras of Semiconcepts and Double Boolean Algebras in Contributions to General Algebra, 13, Verlag Johannes Heyn, Wien, 2000.

Priestley, H.A., Representation of distributive lattices by means of ordered Stone spaces, Bull. Lond. Math. Soc., 2(1970), 186-190.

S˘ac˘area, C., Contextual Uniformities, Proceedings of the 11th International Conference on Formal Concept Analysis, LNAI 7880, Springer Verlag, Heidelberg, 2013, 244-253.

Steen, L., Seebach jr., J.A., Counterexamples in Topology, Holt, Rinehart and Winston Inc., 1970.

Stone, H., Topological representations of distributive lattices and Brouwerian logics, Cˇ asopis Peˇst. Mat., 67(1937), 1-25.

Urquhart, A., A topological representation theory for lattices, Algebra Universalis, 8(1978), 45-58.

Wille, R., Restructuring lattice theory: an approach based on hierarchies of concepts, in I. Rival (ed.), Ordered Sets, Reidel, Dordrecht (vol. 83 of NATO Advanced Studies Institute), Boston, 1982, 445-470.

Wille, R., Boolean Concept Logic, in Proceedings of the 8th International Conference on Conceptual Structures ICCS 2000, Lecture Notes in Computer Science, 1867, Springer, 317-331.

Wille, R., Boolean Judgement Logic, in Proceedings of the 9th International Conference on Conceptual Structures ICCS 2001, Lecture Notes in Computer Science, 2120, Springer, 115-128.

Downloads

Published

2019-03-20

How to Cite

BRECKNER, B. E., & SĂCĂREA, C. (2019). A topological representation of double Boolean lattices. Studia Universitatis Babeș-Bolyai Mathematica, 64(1), 11–23. https://doi.org/10.24193/subbmath.2019.1.02

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.