Differential subordinations obtained by using a fractional operator
DOI:
https://doi.org/10.24193/subbmath.2018.4.05Keywords:
Differential subordination, analytic function, fractional operator, convex function.Abstract
We investigate several differential subordinations using the fractional operator Dν,n : A → A, for −∞ < λ < 2, ν > −1, n ∈ N0 = {0, 1, 2, . . .}, introduced in [7].
Mathematics Subject Classification (2010): 30C45.
References
Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Pure and Applied Mathematics No. 225, Marcel Dekker, New York, 2000.
Miller, S.S., Mocanu, P.T., On some classes of first order differential subordinations, Michigan Math. J., 32(1985), 185-195.
Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.
Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.
Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
S˘al˘agean, G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, 1013(1983), 362-372.
Sharma, P., Raina, R.K., S˘al˘agean, G.S., Some geometric properties of analytic functions involving a new fractional operator, Mediterr. J. Math., 13(2016), 4591-4605.
Szatmari, E., On a class of analytic functions defined by a fractional operator, Mediterr. J. Math., (2018), 15:158.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.