The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator

Authors

  • Hari Mohan SRIVASTAVA Department of Mathematics and Statistics University of Victoria Victoria, British Columbia V8W 3R4, Canada and Department of Medical Research China Medical University Hospital China Medical University, Taichung 40402 Taiwan, Republic of China, e-mail: harimsri@math.uvic.ca
  • Shahid KHAN Department of Mathematics Riphah International University Islamabad, Pakistan, e-mail: shahidmath761@gmail.com
  • Qazi Zahoor AHMAD Department of Mathematics Abbottabad University of Science and Technology Abbottabad, Pakistan, e-mail: zahoorqazi5@gmail.com https://orcid.org/0000-0001-8805-6452
  • Nazar KHAN Department of Mathematics Abbottabad University of Science and Technology Abbottabad, Pakistan, e-mail: nazarmaths@gmail.com https://orcid.org/0000-0003-1123-8578

DOI:

https://doi.org/10.24193/subbmath.2018.4.01

Keywords:

Analytic functions, univalent functions, Taylor-Maclaurin series representation, Faber polynomials, bi-inivalent functions, q-derivative operator, q- hypergeometric functions, q-integral operators.

Abstract

In our present investigation, we first introduce several new subclasses of analytic and bi-univalent functions by using a certain q-integral operator in the open unit disk U = {z : z ∈ Cand |z| < 1}. By applying the Faber polynomial expansion method as well as the q-analysis, we then determine bounds for the nth coefficient in the Taylor-Maclaurin series expansion for functions in each of these newly-defined analytic and bi-univalent function classes subject to a gap series condition. We also highlight some known consequences of our main results.

Mathematics Subject Classification (2010): 05A30, 30C45, 11B65, 47B38.

References

Agrawal, S., Sahoo, S.K., A generalization of starlike functions of order α, Hokkaido Math. J., 46(2017), 15–27.

Airault, H., Symmetric sums associated to the factorization of Grunsky coefficients, in “Proceedings of the Conference on Groups and Symmetries”, Montr´eal, Canada, 2007.

Airault, H., Remarks on Faber polynomials, Internat. Math. Forum, 3(2008), 449–456. [4] Airault, H., Bouali, A., Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(2006), 179–222.

Altınkaya, S¸., Yalc¸ın, S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C.R. Acad. Sci. Paris S´er. I, 353(2015), 1075–1080.

Altınkaya, S¸., Yalc¸ın, S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babe¸s-Bolyai Math., 61(2016), 37–44.

Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris S´er. I, 352(2014), 479–484.

Bulut, S., Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C.R. Acad. Sci. Paris S´er. I, 353(2015), 113–116.

C¸ a˘glar, M., Deniz, E., Srivastava, H.M., Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41(2017), 694–706.

Duren, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

Faber, G., U¨ber polynomische Entwicklungen, Math. Ann., 57(1903), 389–408.

Hamidi, S.G., Jahangiri, J.M., Faber polynomial coefficient estimates for analytic biclose-to-convex functions, C.R. Acad. Sci. Paris S´er. I, 352(2014), 17–20.

Hamidi, S.G., Jahangiri, J.M., Faber polynomial coefficients of bi-subordinate functions, C.R. Acad. Sci. Paris S´er. I, 354(2016), 365–370.

Ismail, M.E.H., Merkes, E., Styer, D., A generalization of starlike functions, Complex Variables Theory Appl., 14(1990), 77–84.

Jackson, F.H., On q-definite integrals, Quart. J. Pure Appl. Math., 41(1910), 193–203. [16] Jackson, F.H., q-difference equations, Amer. J. Math., 32(1910), 305–314.

Kanas, S., R˘aducanu, D., Some class of analytic functions related to conic domains, Math. Slovaca, 64(2014), 1183–1196.

Noor, K. I., On new classes of integral operators, J. Natur. Geom., 16(1999), 71–80. [19] Noor, K.I., Noor, M.A., On certain classes of analytic functions defined by Noor integral operator, J. Math. Anal. Appl., 281(2003), 244–252.

Sharma, P., Faber polynomial coefficient estimates for a class of analytic bi-univalent functions involving a certain differential operator, Asian-European J. Math., 10(2017), Article ID 1750016, 1–11.

Srivastava, H.M., Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in “Univalent Functions, Fractional Calculus, and Their Appli- cations” (Srivastava, H.M. and Owa, S., Editors), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329–354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.

Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23(2010), 1188–1192.

Srivastava, H.M., Bansal, D., Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1(2017), 61–69.

Srivastava, H.M., Bulut, S., C¸ a˘glar, M., Ya˘gmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), 831–842.

Srivastava, H.M., Gaboury, S., Ghanim, F., Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Mat., 28(2017), 693–706.

Srivastava, H.M., Su¨mer Eker, S., Ali, R.M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839–1845.

Todorov, P.G., On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., 162(1991), 268–276.

Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990–994.

Xu, Q.-H., Xiao, H.-G., Srivastava, H.M., A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461–11465.

U¸car, H.E.O¨ ., Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276(2016), 122–126.

Downloads

Published

2018-12-20

How to Cite

SRIVASTAVA, H. M., KHAN, S., AHMAD, Q. Z., & KHAN, N. (2018). The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Studia Universitatis Babeș-Bolyai Mathematica, 63(4), 419–436. https://doi.org/10.24193/subbmath.2018.4.01

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.