A comparative analysis of the convergence regions for different parallel affine projection algorithms

Authors

  • Irina Maria ARTINESCU West University of Timi¸soara Faculty of Mathematics and Computer Science V. Parvan 4 Street, 300223 Timi¸soara, Romania, e-mail: irina.artinescu84@e-uvt.ro https://orcid.org/0000-0002-1853-7354

DOI:

https://doi.org/10.24193/subbmath.2018.3.11

Keywords:

Convex feasibility problem, parallel projection method, affine projection.

Abstract

This paper analysis the dimension and the shape of convergence regions of three algorithms used to solve the convex feasibility problem in bidimensional space: the Parallel Projection Method (PPM), the classical Extrapolated Method of Parallel Projections (EMOPP) and a modified version of EMOPP.

Mathematics Subject Classification (2010): 52A10.

References

Agmon, S., The relaxation method for linear inequalities, Canad. J. Math., 6(1954), 382-392.

Bauschke, H.H., Borwein, J.M., On projection algorithms for solving convex feasibility problems, SIAM Rev., 38(1996), no. 3, 367-426.

Censor, Y., Chen, W., Combettes, P., David, R., Herman, G., On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim Appl., Kluwer Academic Publishers Norwell, USA, 2012, 1065-1088.

Cimmino, G., Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica 1, Roma, 1938, 326-333.

Combettes, P.L., The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95(1996), 155-270.

Combettes, P.L., Hilbertian convex feasibility problem: Convergence of projection methods, Appl. Math. Optim., 35(1997), 311-330.

Combettes, P.L., Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections, IEEE Trans. Image Process., 6(1997), no. 4, 493 -506.

Gilbert, P., Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theoret. Biol., 36(1972), 105-117.

Gordon, R., Bender, R., Herman, G.T., Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theoret. Biol., 29(1970), 471-481.

Gubin, L.G., Polyak, B.T., Raik, E.V., The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys., 7(1967), no. 6, 1-24.

Merzlyakov, Y.I., On a relaxation method of solving systems of linear inequalities, USSR Comput. Math. Math. Phys., 2(1963), 504-510.

Motzkin, T.S., Schoenberg, I.J., The relaxation method for linear inequalities, Canad. J. Math., 6(1954), 393-404.

Downloads

Published

2018-09-20

How to Cite

ARTINESCU, I. M. (2018). A comparative analysis of the convergence regions for different parallel affine projection algorithms. Studia Universitatis Babeș-Bolyai Mathematica, 63(3), 401–411. https://doi.org/10.24193/subbmath.2018.3.11

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.