A note on the Wang-Zhang and Schwarz inequalities

Authors

  • Sever S. DRAGOMIR Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia, sever.dragomir@vu.edu.au http://rgmia.org/dragomir https://orcid.org/0000-0003-2902-6805

DOI:

https://doi.org/10.24193/subbmath.2018.3.10

Keywords:

Schwarz inequality, inner products, inequalities for sums.

Abstract

In this note we show that the Wang-Zhang inequality can be naturally applied to obtain an elegant reverse for the classical Schwarz inequality in complex inner product spaces.

Mathematics Subject Classification (2010): 46C05, 26D15.

Author Biography

Sever S. DRAGOMIR, Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia, sever.dragomir@vu.edu.au http://rgmia.org/dragomir

School of Computer Science & Applied Mathematics University of the Witwatersrand, Private Bag 3 Johannesburg 2050, South Africa e-mail: sever.dragomir@vu.edu.au

References

Diaz, J.B., Metcalf, F.T., Stronger forms of a class of inequalities of G. P´olya-G. Szeg¨o and L.V. Kantorovich, Bull. Amer. Math. Soc., 69(1963), 415-418.

Dragomir, S.S., Some Gru¨ss type inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 4(2003), No. 2, Article 42, 10 pp.

Dragomir, S.S., Advances in Inequalities of the Schwarz, Gru¨ss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., Hauppauge, NY, 2005. viii+249 pp.

Izumino, S., Peˇcari´c, J., A weighted version of Ozeki’s inequality, Sci. Math. Japonicae, 56(2002), no. 3, 511-526.

Kre˘ın, M.K., Angular localization of the spectrum of a multiplicative integral in a Hilbert space, Funct. Anal. Appl., 3(1969), 89–90.

Lin, M., Remarks on Kre˘ın’s inequality, The Math. Intelligencer, 34(2012), no. 1, 3-4. [7] P´olya, G., Szego¨, G., Problems and Theorems in Analysis, Volume 1: Series, Integral Calculus, Theory of Functions (in English), translated from german by D. Aeppli, corrected printing of the revised translation of the fourth German edition, Springer Verlag, New York, 1972.

Shisha, O., Mond, B., Bounds on Differences of Means, Inequalities, Academic Press Inc., New York, 1967, pp. 293-308.

Wang, B., Zhang, F., A trace inequality for unitary matrices, Amer. Math. Monthly, 101(1994), 453–455.

Watson, G.S., Alpargu, G., Styan, G.P.H., Some comments on six inequalities associated with the inefficiency of ordinary least squares with one regressor, Linear Algebra and its Appl., 264(1997), 13-54.

Zhang, F., Matrix Theory: Basic Results and Techniques, Springer-Verlag, New York, 2011

Downloads

Published

2018-09-20

How to Cite

DRAGOMIR, S. S. (2018). A note on the Wang-Zhang and Schwarz inequalities. Studia Universitatis Babeș-Bolyai Mathematica, 63(3), 395–399. https://doi.org/10.24193/subbmath.2018.3.10

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.