Variable Hardy and Hardy-Lorentz spaces and applications in Fourier analysis

Authors

  • Ferenc WEISZ Department of Numerical Analysis, Eötvös Loránd Tudományegyetem: Budapest, H-1117 Budapest, P´azma´ny P. s´et´any 1/C., Hungary, e-mail: weisz@inf.elte.hu https://orcid.org/0000-0002-7766-2745

DOI:

https://doi.org/10.24193/subbmath.2018.3.09

Keywords:

Variable Hardy spaces, variable Hardy-Lorentz spaces, atomic decomposition, θ-summability, maximal operator.

Abstract

We summarize some results about the variable Hardy and Hardy d  d Lorentz spaces Hp(·)(R ) and Hp(·),q (R ) and about the θ-summability of multidimensional Fourier transforms. We prove that the maximal operator of the     ...  means is bounded from Hp(·)(R ) to Lp(·)(R ) and from Hp(·),q (R ) to Lp(·),q (R ). This implies some norm and almost everywhere convergence results for the Riesz, Bochner-Riesz, Weierstrass, Picard and Bessel summations.

Mathematics Subject Classification (2010): 42B08, 42A38, 42A24, 42B25, 42B30.

References

Bownik, M., Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc., 133(2005), 3535–3542.

Butzer, P.L., Nessel, R.J., Fourier Analysis and Approximation, Birkh¨auser Verlag, Basel, 1971.

Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math., 116(1966), 135–157.

Cruz-Uribe, D., Fiorenza, A., Martell, J., P´erez, C., The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 31(2006), 239–264.

Cruz-Uribe, D.V., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, New York, Birkha¨user/Springer, 2013.

Diening, L., Harjulehto, P., H¨asto¨, P., Ruˇziˇcka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Berlin, Springer, 2011.

Feichtinger, H.G., Weisz, F., Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Cambridge Philos. Soc., 140(2006), 509–536. [8] G´at, G., Pointwise convergence of cone-like restricted two-dimensional (C, 1) means of trigonometric Fourier series, J. Approx. Theory., 149(2007), 74–102.

G´at, G., Goginava, U., Nagy, K., On the Marcinkiewicz-Fej´er means of double Fourier series with respect to Walsh-Kaczmarz system, Studia Sci. Math. Hungar., 46(2009), 399–421.

Goginava, U., Marcinkiewicz-Fej´er means of d-dimensional Walsh-Fourier series, J. Math. Anal. Appl., 307(2005), 206–218.

Goginava, U., Almost everywhere convergence of (C, a)-means of cubical partial sums of d-dimensional Walsh-Fourier series, J. Approx. Theory, 141(2006), 8–28.

Grafakos, L., Classical and Modern Fourier Analysis, Pearson Education, New Jersey, 2004.

Hunt, R.A., On the convergence of Fourier series, in: Orthogonal Expansions and their Continuous Analogues, Proc. Conf. Edwardsville, Ill., 1967, pages 235–255, Illinois Univ. Press Carbondale, 1968.

Jiao, Y., Zhou, D., Weisz, F., Wu, L., Variable martingale Hardy spaces and their applications in Fourier analysis, (preprint).

Jiao, Y., Zuo, Y., Zhou, D., Wu, L., Variable Hardy-Lorentz spaces Hp(·),q (Rn), Math. Nachr., (to appear).

Kempka, H., Vyb´ıral, J., Lorentz spaces with variable exponents, Math. Nachr., 287(2014), 938–954.

Latter, R.H., A characterization of Hp(Rn) in terms of atoms, Studia Math., 62(1978), 92–101.

Liu, J., Weisz, F., Yang, D., Yuan, W., Littlewood-Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications, J. Fourier Anal. Appl., (to appear).

Liu, J., Weisz, F., Yang, D., Yuan, W., Variable anisotropic Hardy spaces and their applications, Taiwanese J. Math., (to appear).

Lu, S., Four Lectures on Real Hp Spaces, World Scientific, Singapore, 1995.

Nakai, E., Sawano, Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262(2012), no. 9, 3665–3748.

Persson, L.E., Tephnadze, G., Wall, P., Maximal operators of Vilenkin-N¨orlund means, J. Fourier Anal. Appl., 21(1015), no. 1, 76–94.

Sawano, Y., Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory, 77(2013), 123–148.

Simon, P., (C, α) summability of Walsh-Kaczmarz-Fourier series, J. Approx. Theory, 127(2004), 39–60.

Simon, P., On a theorem of Feichtinger and Weisz, Ann. Univ. Sci. Budap. Rolando E¨otvo¨s, Sect. Comput., 39(2013), 391–403.

Stein, E.M., Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.

Stein, E.M., Taibleson, M.H., Weiss, G., Weak type estimates for maximal operators on certain Hp classes, Rend. Circ. Mat. Palermo, Suppl., 1(1981), 81–97.

Stein, E.M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.

Trigub, R.M., Belinsky, E.S., Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.

Weisz, F., Summability of Fourier transforms in variable Hardy and Hardy-Lorentz spaces, (preprint).

Weisz, F., Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

Weisz, F., Summability of multi-dimensional trigonometric Fourier series, Surv. Approx. Theory, 7(2012), 1–179.

Weisz, F., Convergence and Summability of Fourier Transforms and Hardy Spaces, Applied and Numerical Harmonic Analysis, Springer, Birkha¨user, Basel, 2017.

Wilson, J.M., On the atomic decomposition for Hardy spaces, Pac. J. Math., 116(1985), 201–207.

Yan, X., Yang, D., Yuan, W., Zhuo, C., Variable weak Hardy spaces and their applications, J. Funct. Anal., 271(2016), 2822–2887.

Downloads

Published

2018-09-20

How to Cite

WEISZ, F. (2018). Variable Hardy and Hardy-Lorentz spaces and applications in Fourier analysis. Studia Universitatis Babeș-Bolyai Mathematica, 63(3), 381–393. https://doi.org/10.24193/subbmath.2018.3.09

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.