Applications of first order differential subordination for functions with positive real part

Authors

DOI:

https://doi.org/10.24193/subbmath.2018.3.02

Keywords:

Differential subordination, starlike function, lemniscate of Bernoulli, functions with positive real part.

Abstract

Several inclusions between the class of functions with positive real part and the class of starlike univalent functions associated with lemniscate of Bernoulli are obtained by making use of the well-known theory of differential subordination. Further, these inclusions give sufficient conditions for normalized analytic functions to belong to some subclasses of starlike functions. The results also provide sharp version of some previously known results.

Mathematics Subject Classification (2010): 30C45.

References

Ali, R.M., Cho, N.E., Ravichandran, V., Kumar, S.S., Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math., 16(2012), no. 3, 1017–1026.

Ali, R.M., Ravichandran, V., Seenivasagan, N., Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci., 2007(2007), Art. ID 62925, 7 pp.

Bulboaca˘, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V., Radius problem for sin-starlike functions, Bull. Iranian Math. Soc. (to appear).

Cho, N.E., Lee, H.J., Park, J.H., Srivastava, R., Some applications of the first-order differential subordinations, Filomat, 30(2016) no. 6, 1465–1474.

Dorca, I., Breaz, D., Subordination of certain subclass of convex function, Stud. Univ. Babe¸s-Bolyai Math., 57(2012), no. 2, 181–187.

Goluzin, G.M., On the majorization principle in function theory, Dokl. Akad. Nauk. SSSR, 42(1935), 647–650.

Janowski, W., Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23(1970/1971), 159–177.

Kumar, S.S., Kumar, V., Ravichandran, V., Cho, N.E., Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013(2013), 176, 13 pp.

Kumar, S., Ravichandran, V., A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40(2016) no. 2, 199–212.

Kumar, S., Ravichandran, V., Subordinations for Functions with Positive Real Part, Complex Anal. Oper. Theory, (2017), doi:10.1007/s11785-017-0690-4.

Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.

Mendiratta, R., Nagpal, S., Ravichandran, V., On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(2015), no. 1, 365– 386.

Miller, S.S., Mocanu, P.T., On some classes of first-order differential subordinations, Michigan Math. J., 32(1985), no. 2, 185–195.

Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Dekker, New York, 2000.

Nunokawa, M., Obradovi´c M., Owa, S., One criterion for univalency, Proc. Amer. Math. Soc., 106(1989), no. 4, 1035–1037.

Omar, R., Halim, S.A., Differential subordination properties of Sok´o-l-Stankiewicz starlike functions, Kyungpook Math. J., 53(2013), no. 3, 459–465.

Padmanabhan, K.S., Parvatham, R., Some applications of differential subordination, Bull. Austral. Math. Soc., 32(1985), no. 3, 321–330.

Raina, R.K., Soko´l, J., On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), no. 6, 1427–1433.

Ravichandran, V., Sharma, K., Sufficient conditions for starlikeness, J. Korean Math. Soc., 52(2015) no. 4, 727–749.

Shanmugam, T.N., Convolution and differential subordination, Internat. J. Math. Math. Sci., 12(1989), no. 2, 333–340.

Sharma, K., Jain, N.K., Ravichandran, V., Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), no. 5-6, 923–939.

Sharma, K., Ravichandran, V., Applications of subordination theory to starlike functions, Bull. Iranian Math. Soc., 42(2016) no. 3, 761–777.

Soko´l, J., Stankiewicz, J., Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19(1996), 101–105.

Tuneski, N., Bulboaca˘, T., Jolevska-Tunesk, B., Sharp results on linear combination of simple expressions of analytic functions, Hacet. J. Math. Stat., 45(2016), no. 1, 121–128.

Downloads

Published

2018-09-20

How to Cite

AHUJA, O. P., KUMAR, S., & RAVICHANDRAN, V. (2018). Applications of first order differential subordination for functions with positive real part. Studia Universitatis Babeș-Bolyai Mathematica, 63(3), 303–311. https://doi.org/10.24193/subbmath.2018.3.02

Issue

Section

Articles

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.