Some properties of solutions to a planar system of nonlinear differential equations

Authors

DOI:

https://doi.org/10.24193/subbmath.2018.2.06

Keywords:

Nonlinear second order differential system, extremal principle, zeros of solutions, Sturm-type theorem, Nicolescu-type theorem, Butlewski-type theorem.

Abstract

In this paper we present for the solutions of a planar system of differential equations, extremal principle, Nicolescu-type and Butlewski-type separation theorems. Some applications and examples are given.

Mathematics Subject Classification (2010): 34A12, 34C10, 34A34.

References

Butlewski, Z., Sur les zeros des integrales reelles des equations differentielles lineaires, Mathematica, 17(1941), 85-110.

Hartman, P., Ordinary differential equations, J. Wiley and Sons, New York, 1964.

Ilea, V.A., Otrocol, D., Rus, I.A., Some properties of solutions of the homogeneous nonlinear second order differential equations, Mathematica, 57(80)(2017), no. 1-2, 38- 43.

Mure¸san, A.S., Tonelli’s lemma and applications, Carpathian J. Math., 28(2012), no. 1, 103-110.

Nicolescu, M., Sur les theoremes de Sturm, Mathematica, 1(1929), 111-114.

Reid, W.T., Sturmian theory for ordinary differential equations, Springer, Berlin, 1980. [7] Rus, I.A., On the zeros of solutions of a system with two first order differential equations, (Romanian), Studii ¸si Cerceta˘ri de Matematica˘ (Cluj), 14(1963), 151-156.

Rus, I.A., Separation theorems for the zeros of some real functions, Mathematica, 27(1985), no. 1, 43-46.

Rus, I.A., Differential equations, integral equations and dinamical systems, (Romanian), Transilvania Press, Cluj-Napoca, 1996.

Sansone, G., Equazioni differenziali nel compo reale, Parte Prima, Bologna, 1948. [11] Sansone, G., Equazioni differenziali nel compo reale, Parte Seconda, Bologna, 1949.

Swanson, C.A., Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968.

Tonelli, L., Un’osservazione su un teorema di Sturm, Boll. Union. Mat. Italiana, 6(1927), 126-128.

Downloads

Published

2018-06-30

How to Cite

ILEA, V. (2018). Some properties of solutions to a planar system of nonlinear differential equations. Studia Universitatis Babeș-Bolyai Mathematica, 63(2), 225–234. https://doi.org/10.24193/subbmath.2018.2.06

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.