Integral estimates for a class Bn of operators

Authors

  • Shah Lubna WALI Department of Mathematics, Central University of Kashmir Srinagar, Kashmir, India, e-mail: shahlw@yahoo.co.in https://orcid.org/0000-0002-0258-042X
  • Abdul LIMAN Department of Mathematics, National Institute of Technology Srinagar, India, e-mail: abliman@rediffmail.com

DOI:

https://doi.org/10.24193/subbmath.2018.2.02

Keywords:

B-Operator, polynomial inequalities, integral estimates.

Abstract

Let Pn be the class of polynomials of degree at most n. Rahman introduced a class Bn of operators B that map Pn into itself. In this paper, we establish certain integral estimates concerning B-operator, and thereby obtain generalizations as well as improvements of some well known inequalities for polynomials.

Mathematics Subject Classification (2010): 26D10, 41A17.

References

Ankeny, N.C., Rivlin, T.J., On a Theorem of S. Bernstein, Pacific J. Math., 5(1955), 849–852.

Aresto¨v, V.V., On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk. SSSR. Ser. Mat., 45(1981), 3-22 (in Russian); Math. USSR-Izv., 18(1982), 1–17 (in English).

Aziz, A., Dawood, Q.M., Inequalities for a polynomial and its derivative, J. Approx. Theory, 54(1988), 306-313.

Aziz, A., Rather, N.A., Some compact generalizations of Zygmund-type inequalities for polynomials, Nonlinear Studies, 6(1999), 241–255.

Aziz, A., Shah, W.M., Lp inequalities for polynomials with restricted zeros, Glasnik Matematicki, 57(2002), 73–81.

Bernstein, S., Sur la limitation des d´eriv´ees des polynomes, C. R. Acad. Sci. Paris, 190(1930), 338-340.

Boas Jr., R.P., Rahman, Q.I., Lp inequalities for polynomials and entire functions, Arch. Rational Mech. Anal., 11(1962), 34–39.

de Bruijn, N.G., Inequalities concerning polynomials in the complex domain, Neder. Akad. Wetensch. Proc., 50(1947), 1265–1272.

Govil, N.K., Liman, A., Shah, W.M., Some inequalities concerning derivative and max- imum modulus of polynomials, Aust. J. Math. Anal. Appl., 8(2011), 1–8.

Hardy, G.H., The mean value of the modulus of an analytic function, Proc. London. Math. Soc., 14(1915), 269–277.

Lax, P.D., Proof of a conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509–513.

Marden, M., Geometry of polynomials, Second Ed., Math. Surveys, no. 3, Amer. Math. Pro., R.I., 1996.

Rahman, Q.I., Schmeisser, G., Lp inequalities for polynomials, J. Approx. Theory, 53(1988), 26–32.

Rahman, Q.I., Schmeisser, G., Analytic Theory of Polynomials, Oxford Univ. Press, 2002.

Shah, W.M., Liman, A., An operator preserving inequalities between polynomials, J. Inequal. Pure Appl. Math., 9(2009), 1–12.

Shah, W.M., Liman, A., Integral estimates for the family of B-operators, Operators and Matrices, 5(2011), 79–87.

Wali, S.L., Shah, W.M., Liman, A., Inequalities Concerning B-Operators, Probl. Anal. Issues Anal. 23(5)(2016), 55-72.

Zygmund, A., A remark on conjugate series, Proc. London Math. Soc., 34(2)(1932), 392–400.

Downloads

Published

2018-06-20

How to Cite

WALI, S. L., & LIMAN, A. (2018). Integral estimates for a class Bn of operators. Studia Universitatis Babeș-Bolyai Mathematica, 63(2), 175–188. https://doi.org/10.24193/subbmath.2018.2.02

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.