Generalizations of an asymptotic stability theorem of Bahyrycz, Páles and Piszczek on Cauchy differences to generalized cocycles

Authors

DOI:

https://doi.org/10.24193/subbmath.2018.1.07

Keywords:

Cauchy-differences, generalized cocycles, asymptotic and hyper stabilities.

Abstract

We prove some straightforward analogues and generalizations of a re- cent asymptotic stability theorem of A. Bahyrycz, Zs. P´ales and M. Piszczek on Cauchy differences to semi-cocycles and pseudo-cocycles introduced in a former paper by the present author.

Mathematics Subject Classification (2010): 39B52, 39B82, 20K99, 22A99.

References

Aiemsomboon, L., Sintunavarat, W., On generalized hyperstability of a general linear equation, Acta Math. Hungar., 149(2016), 413–422.

Aiemsomboon, L., Sintunavarat, W., A note on the generalized hyperstability of the general linear equation, Bull. Aust. Math. Soc., 96(2017), 263–273.

Alimohammady, M., Sadeghi, A., On the aymptotic behavior of Pexiderized additive mapping on semigroups, Fasc. Math., 49(2012), 5–14.

Almahalebi, M., Charifi, A., Kabbaj, S., Hyperstability of a Cauchy functional equation, J. Nonlinear Anal. Optim., 6(2015), 127–137.

Anderson, R.M., ”Almost” implies ”near”, Trans. Amer. Math. Soc., 296(1986), 229– 237.

Aoki, T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 491–495.

Bahyrycz, A., Hyperstability of some functional equation on restricted domain: Direct and fixed point method, Bull. Iranian Math. Soc., 42(2016), 959–974.

Bahyrycz, A., Olko, J., Hyperstability of general linear functional equation, Aequationes Math., 90(2016), 527–540.

Bahyrycz, A., P´ales Zs., Piszczek, M., Asymptotic stability of the Cauchy and Jensen functional equations, Acta Math. Hungar., 150(2016), 131-141.

Boros, Z., A characterization of affine differences on intervals, Report of Meeting, The Seventeenth Katowice-Debrecen Winter Seminar, Zakopane (Poland), February 1-4, 2017, Ann. Math. Sil., 31(2017), 188–189.

Boualem, H., Brouzet, R., On what is the almost-near principle, Amer. Math. Monthly, 119(2012), 381–397.

Brillou¨et-Bellout, N., Brzdek, J., Cieplin´ski, K., On some recent developments in Ulam’s type stability, Abstr. Appl. Anal., 2012 (2012), 41 pp.

Brzdek, J., On a method of proving the Hyers-Ulam stability of functional equations on restricted domains, Aust. J. Math. Anal. Appl., 6(2009), 10 pp.

Brzdek, J., Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar., 141(2013), 58–67.

Brzdek, J., Remarks on hyperstability of the Cauchy functional equation, Aequationes Math., 86(2013), 255–267.

Brzdek, J., A hyperstability result for Cauchy equation, Bull. Aust. Math. Soc., 89(2014), 33–40.

Brzdek, J., Cieplin´ski, K., Hyperstability and superstability, Abstr. Appl. Anal., Vol. 2013, 13 pp.

Chung, J.-Y., Stability of functional equations on restricted domains in a group and their asymptotic behaviors, Comput. Appl. Math., 60(2010), 2653–2665.

Chung, J.-Y., Stability of a conditional Cauchy equation, Aequationes Math., 83(2012), 313–320.

Chung, J.-Y., Stability of a conditional Cauchy equation on a set of measure zero, Aequationes Math., 87(2014), 391–400.

Cieplin´ski, K., Applications of fixed point theorems to the Hyers–Ulam stability of functional equations – A survey Ann. Funct. Anal., 3(2012), 151–164.

Czerwik, S., Functional Equations and Inequalities in Several Variables, World Scientific, London, 2002.

Czerwik, S., Kr´ol, K., Ulam stability of functional equations, Aust. J. Math. Anal. Appl., 6(2009), 15 pp.

Davison, T.M.K., Ebanks, B.R., Cocycles on cancellative semigroups, Publ. Math. Debrecen, 46(1995), 137–147.

Ebanks, B.R., Differentiable solutions of a functional equation of Sz´ekelyhidi, Util. Math., 36(1989), 197–199.

Ebanks, B.R., On some functional equations of Jessen, Karpf, and and Thorup, Math. Scand., 44(1979), 231–234.

Ebanks, B.R., On Leibniz differences, Publ. Math. Debrecen, 91 (2017), 143–151.

Ebanks, B.R., Ng, C.T., Characterizations of quadratic differences, Publ. Math. Debrecen, 48(1996), 89–102.

Erdo˝s, J., A remark on the paper ”On some functional equations” by S. Kurepa, Glas. Mat. Ser. III, 14(1959), 3–5.

Forti, G.L., The stability of homomorphisms and amenability, with applications to functional equations, Abh. Math. Semin. Univ. Hambg., 57(1987), 215–226.

Forti, G.L., Hyers–Ulam stability of functional equations in several variables, Aequationes Math., 50(1995), 143–190.

Gˇavru¸taˇ P., A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431–436

Gˇavru¸taˇ, P., On the Hyers-Ulam-Rassias asymptotic stability of mappings, Bul. S¸tiin¸t. Univ. Politeh. Timi¸s. Ser. Mat. Fiz., 41(1996), 48–51.

Ger, R., A survey of recent results on stability of functional equations, Proceedings of the 4th International Conference on Functional Equations and Inequalities, Pedagogical University of Cracow, 1994, 5–36.

Glavosits, T., Sza´z, A´ ., A Hahn-Banach type generalization of the Hyers-Ulam theorem, An. S¸tiin¸t. Univ. ”Ovidius” Constan¸ta Ser. Mat., 19(2011), 139–144.

Glavosits, T., Sza´z, A´ ., Constructions and extensions of free and controlled additive relations, In: Th. M. Rassias (Ed.), Handbook of Functional Equations: Functional Inequalities, Springer Optim. Appl., 95(2014), 161–208.

Gselmann E., P´ales, Zs., Additive solvability and linear independence of the solutions of a system of functional equations, Acta Sci. Math. (Szeged), 82(2016), 101–110.

Hyers, D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222–224.

Hyers, D.H., Rassias, Th.M., Approximate homomorphisms, Aequationes Math., 44(1992), 125–153.

Hyers, D.H., Isac, G., Rassias, Th.M., Stability of Functional Equations in Several Variables, Birkha¨user, Boston, 1998.

Hyers, D.H., Isac, G., Rassias, Th.M., On the asymptotic aspect of Hyers–Ulam stability of mappings, Proc. Amer. Math. Soc., 126(1998), 425–430.

Jessen, B., Karpf, J., Thorup, A., Some functional equations in groups and rings, Math. Scand., 22(1968), 257–265.

Jun, K.-W., Shin, D.-S., Kim, B.-D., On the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl., 239(1999), 20–29.

Jung, S.M., Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fl, 2001.

Jung, S.M., Local stability of the additive functional equation, Glas. Mat. Ser. III, 38(2003), 45–55.

Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optim. Appl. 48, New York, 2011.

Jung, S.M., Moslehian, M.S., Sahoo, P.K., Stability of a generalized Jensen equation on restricted domains, J. Math. Inaqual., 4(2010), 191–206.

Jung, S.M., Popa, D., Rassias, M.Th., On the stability of the linear functional equation in a single variable on complete metric groups, J. Global. Optim., 59(2014), 165–171.

Kannappan, Pl., Functional Equations and Inequalities with Applications, Springer, Dordrecht, 2009.

Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, Polish Sci. Publ. and Univ. S´laski, Warszawa, 1985.

Kurepa, S., On some functional equations, Glas. Mat. Ser. III, 11(1956), 95–100.

Losonczi, L., On the stability of Hossu´’s functional equation, Results Math., 29(1996), 305–310.

Maksa, Gy., P´ales, Zs., Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyha´zi. (N.S.), 17(2001), 107–112.

Manar, Y., Elqorachi, E., Rassias, Th.M., On the generalized Hyers-Ulam stability of the Pexider equation on restricted domains, In: Rassias, Th. M. (Ed.), Handbook of Functional Equations, Stability Theory, Springer Optim. Appl., 96(2014), 279–299.

Molaei, D., Najati, A., Hyperstability of the general linear equation on restricted do mains, Acta Math. Hungar., 149(2016), 238–253.

Moszner, Z., On the stability of functional equations, Aequationes Math., 77(2009), 33– 88.

Moszner, Z., Stability has many names, Aequationes Math., 90(2016), 983–999.

Najati, A., Molaee, D., Park, Ch., Hyperstability of a generalized Cauchy functional equation, J. Comput. Anal. Appl., 22(2017), 1049–1054.

Najati, A., Rassias, Th.M., Stability of the Pexiderized Cauchy and Jensen’s equations on restricted domains, Commun. Math. Anal., 8(2010), 125–135.

P´ales, Zs., Bounded solutions and stability of functional equations for two variable functions, Results Math., 26(1994), 360–365.

Piszczek, M., Remark on hyperstability of the general linear equation, Aequationes Math., 88(2014), 163–168.

Piszczek, M., Hyperstability of the general linear functional equation, Bull. Korean Math. Soc., 52(2015), 1827–1838.

P´olya, Gy., Szego˝, G., Aufgaben und Lehrs¨atze aus der Analysis I, Verlag von Julius Springer, Berlin, 1925.

Rassias, J.M., On approximation of approximately linear mappings by linear mappings J. Funct. Anal., 46(1982), 126–130.

Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 279–300.

Rassias, Th.M., Stability and set-valued functions, In: Analysis and Topology, World Sci. Publ., River Edge, NJ, 1998, 585–614.

Rassias, Th.M., The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352–378.

Rassias, Th.M., On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), 23–130.

Rassias, Th.M., On the stability of functional equations in Banach spaces J. Math. Anal. Appl., 251(2000), 264–284.

Rassias, Th.M., On the stability of functional equations originated by a problem of Ulam, Mathematica (Cluj), 44(2002), 39–75.

S´anchez, F.C., Castillo, J.M.F., Banach space techniques underpinning a theory for nearly additive mappings, Dissertationes Math. (Rozprawy Mat.), 404(2002), 73 pp.

Skof, F., Sull’approssimazione delle applicazioni localmente δ-additive, Atti Accad. Sci. Torino, 117(1983), 377–389.

Skof, F., Properieta´ locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano, 53(1983), 113–129.

Sˇpakula, J., Zlatoˇs, P., Almost homomorphisms of compact groups, Illinois J. Math., 48(2004), 1183–1189.

Stetkaer, H., Functional Equations on Groups, World Scientific, New Jersey, 2013. [76] Sza´z, A´ ., Preseminormed spaces, Publ. Math. Debrecen, 30(1983), 217–224.

Sza´z, A´ ., The Hyers–Ulam and Hahn–Banach theorems and some elementary operations on relations motivated their set-valued generalizations, In: P. M. Pardalos, P. G. Georgiev and H. M. Srivastava (Eds.), Stability, Approximations, and Inequalities, Springer Optim. Appl. 68(2012), 631–705.

Sza´z, A´ ., Two natural generalizations of cocycles, J. Int. Math. Virtual Inst., 6(2016), 66–86.

Sza´z, A´ ., Remarks and problems at the conference on inequalities and applications, Hajdu´szoboszlo´, Hungary, 2016, Tech. Rep., Inst. Math., Univ. Debrecen, 9(2016), 34 pp.

Sza´z, A´ ., A natural Galois connection between generalized norms and metrics, Acta Univ. Sapientiae Math., 9(2017), 353-366.

Sz´ekelyhidi, L., Stability properties of functional equations in several variables, Stochastica, 47(1995), 95–100.

Sz´ekelyhidi, L., Ulam’s problem, Hyers’s solution – and to where they led, In: Th. M. Rassias (Ed.), Functional Equations and Inequalities, Math. Appl., 518, Kluwer Acad. Publ., Dordrecht, 2000, 259–285.

Tabor, J., Tabor, J., Stability of the Cauchy functional equation in metric groupoids Aequationes Math., 76(2008), 92–104.

Volkmann, P., Zur Stabilit¨at der Cauchyschen und der Hosszu´schen Funktionalgleichung, Seminar 40(1998), No. 1, 5 pp.

Downloads

Published

2018-03-30

How to Cite

SZÁZ, Árpád. (2018). Generalizations of an asymptotic stability theorem of Bahyrycz, Páles and Piszczek on Cauchy differences to generalized cocycles. Studia Universitatis Babeș-Bolyai Mathematica, 63(1), 109–124. https://doi.org/10.24193/subbmath.2018.1.07

Issue

Section

Articles

Similar Articles

<< < 7 8 9 10 11 12 

You may also start an advanced similarity search for this article.