Common fixed point theorem for generalized nonexpansive mappings on ordered orbitally complete metric spaces and application

Authors

DOI:

https://doi.org/10.24193/subbmath.2017.4.09

Keywords:

Partially ordered set, nonexpansive mapping, orbitally complete metric space, common fixed point, weak annihilator, dominating maps, partially weakly increasing, weakly compatible.

Abstract

We propose a common fixed point theorem for new notion of generalized nonexpansive mappings for two pairs of maps in an ordered orbitally complete metric space. To illustrate our result, we give throughout the paper two examples. Existence of solutions for certain system of functional equations arising in dynamic programming is also presented as application.

Mathematics Subject Classification (2010): 47H10, 54H25.

References

Abbas, M., Nazir, T., Radenovi´c, S., Common fixed point of four maps in partially ordered metric spaces, Appl. Math. Lett., 24(2011), 1520-1526.

Agarwal, R.P., El-Gebeily, M.A., O’Regan, D., Generalized contractions in partially ordered metric spaces, Appl. Anal., 87(2008), 1-8.

Altun, I., Simsek, H., Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl., 2010 (2010), Article ID 621492, 17 pages.

Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integerales, Fund. Math., 3(1922), 133-181.

Bellman, R., Lee, E. S., Functional equations in dynamic programming, Aequationes Math., 17(1978), 1-18.

Bhakta, P.C., Mitra, S., Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl., 98(1984), no. 2, 348-362.

Browder, F.E., Petryshyn, W.V., Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20(1967), 197-228.

Bruck, R.E., Asymptotic behaviour of nonexpansive mappings, Contemporary Mathematics 18, Fixed Points and Nonexpansive Mappings, (R.C. Sine, Ed.), AMS, Providence, RI, 1980.

C´ iri´c, Lj. B., A generalization of Banach’s contraction principle, Proc. Am. Math. Soc., 45(1974), 267-273.

C´ iri´c, Lj. B., On some nonexpansive mappings and fixed points, Indian J. Pure Appl. Math., 24(1993), no. 3, 145-149.

C´ iri´c, Lj. B. A new class of nonexpansive type mappings and fixed points, Czech. Math. J., 49(124)(1999), 891-899.

Ding, H.Sh., Nashine, H.K, Kadelburg, Z., Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces, Fixed Point Theory Appl., 85(2012), 14 pages.

Harjani, J., Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71(2009), 3403-3410.

Kirk, W.A., Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions, Proc. Amer. Math. Soc., 50(1975), 143-149.

Matkowski, J., Integrable solutions of functional equations, Dissertationes Math., 127(1975), 1-68.

Matkowski, J., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 62(1977), 344-348.

Nashine, H.K., Kadelburg, Z., Generalized nonexpansive mappings in ordered metric spaces and their (common) fixed points with applications, RACSAM, 108(2014), 633- 651.

Nashine, H.K., Kadelburg, Z., Implicit relations related to ordered orbitally complete metric spaces and applications, RACSAM, 111(2017), 403-424.

Nashine, H.K., Kadelburg, Z., Golubovi´c, Z., Common fixed point results using generalized altering distances on orbitally complete ordered metric spaces, J. Appl. Math., 2012, Article ID 382094, 1-13.

Nashine, H.K., Samet, B., Fixed point results for mappings satisfying (ψ, ϕ)-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. TMA, 74(2011), 2201-2209.

Nieto, J.J., L´opez, R.R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.

O’Regan, D., Petru¸sel, A., Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl., 341(2008), 1241-1252.

Parvaneh, V., Razani, A., Roshan, J.R., Common fixed points of six mappings in partially ordered G-metric spaces, Math. Sci., 7(2013):18.

Pathak, H.K., Cho, Y.J., Kang, S.M., Lee, B.S., Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Le Mathematiche, 50(1995), no. 1, 15-33.

Petrusel, A., Rus, I.A., Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., 134(2006), 411-418.

Ran, A.C.M., Reurings, M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.

Reich, S., Fixed points of nonexpansive functions, J. London Math. Soc., 7(1973), no. 2, 5-10.

Sastry, K.P.R., Naidu, S.V.R., Rao, I.H.N., Rao, K.P.R., Common fixed points for asymptotically regular mappings, Indian J. Pure Appl. Math., 15(1984), 849-854.

Shatanawi, W., Samet, B., On (ψ, φ)-weakly contractive condition in partially ordered metric spaces, Comput. Math. Appl., 62(2011), 3204-3214.

Singh, S.L., Mishra, S.N., On Ljubomir C´iri´c fixed point theorem for nonexpansive type maps with applications, Indian J. Pure Appl. Math., 33(2002), no. 4, 531-542.

Turinici, M., Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117(1986), 100-127.

Turinici, M., Fixed points for monotone iteratively local contractions, Demonstratio Math., 19(1986), 171-180.

Downloads

Published

2017-12-30

How to Cite

NASHINE, H. K., & AGARWAL, R. P. (2017). Common fixed point theorem for generalized nonexpansive mappings on ordered orbitally complete metric spaces and application. Studia Universitatis Babeș-Bolyai Mathematica, 62(4), 521–536. https://doi.org/10.24193/subbmath.2017.4.09

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.