Modified Hadamard product properties of certain class of analytic functions with varying arguments defined by Salagean and Ruscheweyh derivative
DOI:
https://doi.org/10.24193/subbmath.2017.4.05Keywords:
Analytic functions, modified Hadamard product, Sălăgean and Ruscheweyh derivative.Abstract
In this paper we study the modified Hadamard product properties of certain class of analytic functions with varying arguments defined by S˘alăgean and Ruscheweyh derivative. The obtained results are sharp and they improve known results.
Mathematics Subject Classification (2010): 30C45.
References
Alb Lupa¸s, A., Andrei, L., Aspects of univalent holomorphic functions involving Ruscheweyh derivative and generalized Salagean operator, Journal of Computational Analysis & Applications, 19(2015), no. 1, 272-277.
Al-Amiri, H.S., On Ruscheweyh derivatives, Ann. Polon. Math., 38(1980), 87-94.
Al-Oboudi, F.M. On univalent functions defined by a generalized Salagean operator, Ind. J. Math. Math. Sci., 27(2004), 1429-1436.
Attiya, A.A., Aouf, M.K., A study on certain class of analytic functions defined by Ruscheweyh derivative, Soochow J. Math., 33(2007), no. 2, 273-289.
Hossen, H.M., S˘ala˘gean, G.S., Aouf, M.K., Notes on certain classes of analytic functions with negative coefficients, Mathematica, 39(1997), no. 2, 165-179.
Mocanu, P.T., Bulboac˘a, T., S˘ala˘gean, G.S., The geometric theory of univalent functions, Casa C˘ar¸tii de S¸tiin¸ta˘, Cluj-Napoca, 2006.
P´all-Szab´o, Á.O., Certain class of analytic functions with varying arguments defined by S˘al˘agean and Ruscheweyh derivative, Mathematica (Cluj), 59(82)(2017), no. 1-2, 80-88. [8] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
S˘al˘agean, G.S., Convolution properties of some classes of analytic functions with negative coefficients, Proc. Int. Symposium New. Develop. Geometric Function Th. and its Appl. GFTA, Univ. Kebangsaan Malaysia, 10-13 Nov. 2008, 12-16.
S˘al˘agean, G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, 1013(1983), 362-372.
Schild, A., Silverman, H., Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29(1975), 99-107.
Silverman, H., Univalent functions with varying arguments, Houston J. Math., 17(1981), 283-287.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.