Quadratic refinements of matrix means

Authors

  • Mohammad SABABHEH Department of Basic Sciences Princess Sumaya University for Technology Al Jubaiha, Amman 11941, Jordan, Department of Mathematics University of Sharjah Sharjah 27272, UAE e-mail: msababheh@sharjah.ac.ae, e-mail: sababheh@psut.edu.jo, sababheh@yahoo.com https://orcid.org/0000-0002-1321-2702

DOI:

https://doi.org/10.24193/subbmath.2017.4.01

Keywords:

Positive matrices, matrix means, norm inequalities, Young’s inequality.

Abstract

The main target of this article is to present refinements of the matrix arithmetic-geometric mean inequality. The main difference between these refinements and the ones in the literature is the quadratic behavior of the refining terms. These refinements include the L¨oewner partial ordering, determinants, trace and unitarily invariant norms refinements.

Mathematics Subject Classification (2010): 15A39, 15B48, 47A30, 47A63.

References

Bakherad, M., Krin´c, M., Moslehian, Sal, M., Reverses of the Young inequality for matrices and operators, Rocky Mountain Journal of Mathematics, 46(2016), 1089-1105.

Hirzallah, O., Kittaneh, F., Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl., 308(2000), 77-84.

Horn, F., Johnson, C., Matrix Analysis, Cambridge Univ. Press, 1985.

Kittaneh, F., Norm inequalities for fractional powers of positive operators, Lett. Math. Phys., 27(1993), 279-285.

Kittaneh, F., Manasrah, Y., Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 36(2010), 262-269.

Kittaneh, F., Manasrah, Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59(2011), 1031-1037.

Kittaneh, F., Moslehian, M., Sababbeh. M., Quadratic interpretation of the Heinz means, Math. Ineq. Appl. (in press).

Krni´c, M., More accurate Young, Heinz, and Ho¨lder inequalities for matrices, Period. Math. Hung., 71(2015), 78-91.

Liao, W., Wu, J., Reverse arithmetic-harmonic mean and mixed mean operator inequalities, J. Inequal. Appl., 2015:215.

Mitroi, F., About the precision in Jensen-Steffensen inequality, Annals of the University of Craiova, 37(2010), 73-84.

Sababheh, M., Log and harmonically log-convex functions related to matrix norms, Operators and Matrices, 10(2016), 453-465.

Sababheh, M., Convex functions and means of matrices, Math. Ineq. Appl., 20(2017), 29-47.

Sababheh, M., Means refinements via convexity, Mediterranean Journal of Math., (2017), 14-125.

Sababheh, M., Choi, D., A complete refinement of Young’s inequality, J. Math. Anal. Appl., 440(2016), 379-393.

Sababheh, M., Moslehian, Sal, M., Advanced refinements of Young and Heinz inequalities, Journal of Number Theory, 172(2017), 178-199.

Zhao, J., Wu, J., Operator inequalities involving improved Young and its reverse inequalities, J. Math. Anal. Appl., 421(2015), 1779-1789.

Zuo, H., Shi, G., Fujii, M., Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5(2011), 551-556.

Downloads

Published

2017-12-30

How to Cite

SABABHEH, M. (2017). Quadratic refinements of matrix means. Studia Universitatis Babeș-Bolyai Mathematica, 62(4), 413–426. https://doi.org/10.24193/subbmath.2017.4.01

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.