A study of the inextensible flows of tube-like surfaces associated with focal curves in Galilean 3-space G₃

Authors

  • Adel H. SOROUR Department of Mathematics, Faculty of Science Sohag University, 82524, Sohag, Egypt, e-mail: adel7374@yahoo.com

DOI:

https://doi.org/10.24193/subbmath.2017.3.07

Keywords:

Tube-like surface, Gaussian curvature, mean curvature, Galilean 3- space.

Abstract

In this paper, we study inextensible flows of focal curves associated with tube-like surfaces in Galilean 3-space G₃. We give some characterizations for curvature and torsion of focal curves associated with tube-like surfaces in Galilean 3-space G₃. Furthermore, we show that if flow of this tube-like surface is inextensible then this surface is not developable as well as not minimal. Finally an example of tube-like surface is used to demonstrate our theoretical results and graphed.

Mathematics Subject Classification (2010): 31B30, 58E20.

References

Abdel-Aziz, H.S., Khalifa Saad, M., Weingarten timelike tube surfaces around a spacelike curve, Int. J. Math. Anal., 5(2011), 1225–1236.

Alegre, P., Arslan, K., Carriazo, A., Murathan, C., O¨ ztu¨rk, G., Some special types of developable ruled surface, Hacettepe Journal of Mathematics and Statistics, 9(2010), no. 3, 319-325.

Blaga, P.A., On tubular surfaces in computer graphics, Stud. Univ. Babe¸s-Bolyai Inform., 50(2005), 81–90.

Dede, M., Tubular surfaces in Galilean space, Math. Commun., 18(2013), 209-217.

Ergut, M., Ogrenmis, A.O., Some characterizations of a spherical curves in Galilean space G3, Journal of Advanced Research in Pure Mathematics, 1-2(2009),18-26.

Kamenarovic, I., Existence theorems for ruled surfaces in the Galilean space G3, Rad Hazu Math., 456(1991), no. 10, 183-196.

Karacan, M.K., Yayli, Y., On the geodesics of tubular surfaces in Minkowski 3-Space, Bull. Malays. Math. Sci. Soc., 31(2008), 1–10.

Korpinar, T., Turhan, E., Altay, G., Inextensible flows of developable surfaces associated focal curve of helices in Euclidean 3-space E3, Acta Univ. Apulensis, 29(2012), 235-240.

Kwon, D.Y., Park, F.C., Evolution of inelastic plane curves, Appl. Math. Lett., 12(1999), 115-119.

Kwon, D.Y., Park, F.C., Chi, D.P., Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18(2005), 1156-1162.

Milin-Sipus, Z., Ruled Weingarten surfaces in Galilean Space, Period. Math. Hung., 56(2008), 213–225.

Milin-Sipus, Z., Divjak, B., Some special surface in the pseudo-Galilean space, Acta Math. Hungar., 118(2008), 209–226.

Ogrenmi¸s, A.O., Bekta¸s, M., Ergu¨t, M., On helices in the Galilean space G3, Iranian Journal of Science & Technology, Transaction A, 31(A02)(2007), 177-181.

Ogrenmi¸s, A.O., O˘ ztekin, H., Ergu¨t, M., Bertrand curves in Galilean space and their characterizations, Kragujevac J. Math., 32(2009), 139-147.

Pavkovic, B.J., The general solution of the Frenet system of differential equations for curves in the Galilean space G₃, Rad Hazu Math., 450(1990), 123–128.

Pavkovic, B.J., Kamenarovic, I., The equiform differential geometry of curves in the Galilean space, Glasnik Matematicki, 22(1987), 449–457.

Roschel, O., Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, 1984. [18] Sahin, T., Yilmaz, M., the rectifying developable and the tangent indicatrix of a curve in Galilean 3-space, Acta Math. Hungar., 132(2011), no. 1-2, 154–167.

Sorour, A.H., Weingarten Tube-like Surfaces in Euclidean 3-Space, Stud. Univ. Babe¸s- Bolyai Math., 61(2016), no. 2, 239-250.

Suk Ro, J., Yoon, D.W., Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Math. Soc., 22(2009), 359–366.

Xu, Z., Feng, R., Sun, J., Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math., 195(2006), 220–228.

Downloads

Published

2017-09-30

How to Cite

SOROUR, A. H. (2017). A study of the inextensible flows of tube-like surfaces associated with focal curves in Galilean 3-space G₃. Studia Universitatis Babeș-Bolyai Mathematica, 62(3), 341–352. https://doi.org/10.24193/subbmath.2017.3.07

Issue

Section

Articles

Similar Articles

<< < 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.