Third Hankel determinant for reciprocal of bounded turning function has a positive real part of order alpha
DOI:
https://doi.org/10.24193/subbmath.2017.3.06Keywords:
Univalent function, upper bound, function whose reciprocal derivative has a positive real part, Hankel determinant, positive real function, Toeplitz determinants.Abstract
The objective of this paper is to obtain an upper bound to the third Hankel determinant denoted by |H3(1)| for certain subclass of univalent functions, using Toeplitz determinants.
Mathematics Subject Classification (2010): 30C45, 30C50.
References
Ali, R.M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., (second series), 26(2003), no. 1, 63-71.
Babalola, K.O., On H3(1) Hankel determinant for some classes of univalent functions, Inequ. Theory and Appl., 6(2010), 1-7.
Duren, P.L., Univalent Functions, vol. 259, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), no. 6, 557-560.
Grenander, U., Szego¨, G., Toeplitz Forms and Their Applications, Second Edition, Chelsea Publishing Co., New York, 1984.
Janteng, A., Halim, S.A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), no. 2, 1-5.
Layman, J.W., The Hankel transform and some of its properties, J. Integer Seq., 4(2001), no. 1, 1-11.
Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), no. 2, 251-257.
Mac Gregor, T.H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(1962), no. 3, 532 - 537.
Noor, K.I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28(1983), no. 8, 731-739.
Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, G¨ottingen, 1975. [12] Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(1966), 111-122.
Simon, B., Orthogonal polynomials on the unit circle, Part 1, Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, 2005.
Vamshee Krishna, D., RamReddy, T., Coefficient inequality for a function whose derivative has a positive real part of order α, Math. Bohem., 140(2015), 43-52.
Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T., Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc., 34(2015), 121-127.
Venkateswarlu, B., Vamshee Krishna, D., Rani, N., RamReddy, T., Third Hankel deter- minant for reciprocal of bounded turning functions (Communicated).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.