Third Hankel determinant for reciprocal of bounded turning function has a positive real part of order alpha

Authors

  • Bolineni VENKATESWARLU Department of Mathematics, GIT, GITAM University Visakhapatnam, 530045, A.P., India, e-mail: bvlmaths@gmail.com
  • Nekkanti RANI Department of Sciences and Humanities Praveenya Institute of Marine Engineering and Maritime studies Modavalasa, 534 002, Visakhapatnam, A.P., India, e-mail: raninekkanti1111@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2017.3.06

Keywords:

Univalent function, upper bound, function whose reciprocal derivative has a positive real part, Hankel determinant, positive real function, Toeplitz determinants.

Abstract

The objective of this paper is to obtain an upper bound to the third Hankel determinant denoted by |H3(1)| for certain subclass of univalent functions, using Toeplitz determinants.

Mathematics Subject Classification (2010): 30C45, 30C50.

References

Ali, R.M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., (second series), 26(2003), no. 1, 63-71.

Babalola, K.O., On H3(1) Hankel determinant for some classes of univalent functions, Inequ. Theory and Appl., 6(2010), 1-7.

Duren, P.L., Univalent Functions, vol. 259, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.

Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), no. 6, 557-560.

Grenander, U., Szego¨, G., Toeplitz Forms and Their Applications, Second Edition, Chelsea Publishing Co., New York, 1984.

Janteng, A., Halim, S.A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), no. 2, 1-5.

Layman, J.W., The Hankel transform and some of its properties, J. Integer Seq., 4(2001), no. 1, 1-11.

Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), no. 2, 251-257.

Mac Gregor, T.H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(1962), no. 3, 532 - 537.

Noor, K.I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28(1983), no. 8, 731-739.

Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, G¨ottingen, 1975. [12] Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(1966), 111-122.

Simon, B., Orthogonal polynomials on the unit circle, Part 1, Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1, 2005.

Vamshee Krishna, D., RamReddy, T., Coefficient inequality for a function whose derivative has a positive real part of order α, Math. Bohem., 140(2015), 43-52.

Vamshee Krishna, D., Venkateswarlu, B., RamReddy, T., Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc., 34(2015), 121-127.

Venkateswarlu, B., Vamshee Krishna, D., Rani, N., RamReddy, T., Third Hankel deter- minant for reciprocal of bounded turning functions (Communicated).

Downloads

Published

2017-09-30

How to Cite

VENKATESWARLU, B., & RANI, N. (2017). Third Hankel determinant for reciprocal of bounded turning function has a positive real part of order alpha. Studia Universitatis Babeș-Bolyai Mathematica, 62(3), 331–340. https://doi.org/10.24193/subbmath.2017.3.06

Issue

Section

Articles

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.