A new proof of Ackermann’s formula from control theory

Authors

  • Marius COSTANDIN Technical University of Cluj-Napoca, Str. Memorandumului nr. 28 400114, Cluj-Napoca, Romania, e-mail: costandin@mail.utcluj.ro
  • Petru DOBRA Technical University of Cluj-Napoca, Str. Memorandumului nr. 28 400114, Cluj-Napoca, Romania, e-mail: petru.dobra@aut.utcluj.ro https://orcid.org/0000-0001-6041-5820
  • Bogdan GAVREA Technical University of Cluj-Napoca, Str. Memorandumului nr. 28 400114, Cluj-Napoca, Romania, e-mail: bogdan.gavrea@math.utcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2017.3.05

Keywords:

Eigenvalues placement algorithms, rank one updates, linear systems, matrix determinants.

Abstract

This paper presents a novel proof for the well known Ackermann’s formula, related to pole placement in linear time invariant systems. The proof uses a lemma [3], concerning rank one updates for matrices, often used to efficiently compute the determinants. The proof is given in great detail, but it can be summarised to few lines.

Mathematics Subject Classification (2010): 26D10, 46N30.

References

Ackermann, J., Der Entwurf linearer Regelungsysteme im Zustandraum, Regeltech. Proz.-Datenverarb., 7(1972), 297-300.

Bass, W., Gura, I., High order system design via state-space considerations, Preprints, Join Automatic Control Conference, Rensselner Polytechnic Institute, Troy, N.Y., 1965, 311-318.

Ding, J., Zhou, A., Eigenvalues of rank-one updated matrices with some applications, Appl. Math. Lett., 20(2007), 1223-1226.

Ogata, K., Modern Control Engineering, 4th Ed. Englewood Cliffs, NJ, Prentice Hall, 2001.

Downloads

Published

2017-09-30

How to Cite

COSTANDIN, M., DOBRA, P., & GAVREA, B. (2017). A new proof of Ackermann’s formula from control theory. Studia Universitatis Babeș-Bolyai Mathematica, 62(3), 325–329. https://doi.org/10.24193/subbmath.2017.3.05

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.