Linear Weingarten factorable surfaces in isotropic spaces

Authors

  • Muhittin Evren AYDIN Firat University, Faculty of Science Department of Mathematics 23200 Elazig, Turkey, e-mail: meaydin@firat.edu.tr
  • Alper Osman OGRENMIS Firat University, Faculty of Science Department of Mathematics 23200 Elazig, Turkey, e-mail: aogrenmis@firat.edu.tr https://orcid.org/0000-0001-5008-2655

DOI:

https://doi.org/10.24193/subbmath.2017.2.11

Keywords:

Isotropic space, factorable surface, Weingarten surface, Euler inequality.

Abstract

In this paper, we deal with a certain factorable surface in the isotropic 3-space satisfying aK +bH = c, where K is the relative curvature, H the isotropic mean curvature and a, b, c ∈ R. We obtain a complete classification for such surfaces. As a further study, we prove that a certain graph surface with K = H2 is either a non-isotropic plane or a parabolic sphere.

Mathematics Subject Classification (2010): 53A35, 53A40, 53B25.

References

Aydin, M.E., Ergut, M., Isotropic geometry of graph surfaces associated with product production functions in economics, Tamkang J. Math., 47(4)(2016), 433-443.

Aydin, M.E., Constant curvature factorable surfaces in 3-dimensional isotropic space, arXiv:1612.02458 [math.DG].

Aydin, M.E., Ogrenmis, A.O., Homothetical and translation hypersurfaces with constant curvature in the isotropic space, BSG Proceedings, 23(2016), 1-10.

Bekkar, M., Senoussi, B., Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying Dri = λiri, J. Geom., 103(2012), 17-29.

Chen, B.Y., Decu, S., Verstraelen, L., Notes on isotropic geometry of production models, Kragujevac J. Math., 38(2014), no. 1, 23-33.

Chen, B.Y., Mean curvature and shape operator of isometric immersions in real-space- forms, Glasg. Math. J., 38(1996), 87-97.

Dillen, F., Kuhnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 98(1999), 307-320.

Galvez, J.A., Martinez, A., Milan, F., Linear Weingarten surfaces in R3, Monatsh. Math., 138(2003), 133-144.

Goemans, W., Van de Woestyne, I., Translation and homothetical lightlike hypersurfaces of semi-Euclidean space, Kuwait J. Sci. Eng., 38(2011), no. 2A, 35-42.

Gray, A., Abbena, E., Salamon, S., Modern differential geometry of curves and surfaces with mathematica, Third Edition, Chapman and Hall/CRC Press, New York, 2006.

Hou, Z.H., Ji, F., Helicoidal surfaces with H2 = K in Minkowski 3-space, J. Math. Anal. Appl., 325(2007), 101-113.

Jiu, L., Sun, H., On minimal homothetical hypersurfaces, Colloq. Math., 109(2007), 239- 249.

Kim, M.H., Yoon, D.W., Weingarten quadric surfaces in a Euclidean 3-space, Turk. J. Math., 35(2011), 479-485.

Kuhnel, W., Ruled W-surfaces, Arch. Math., 62(1994), 475-480.

Lee, C.W., Linear Weingarten rotational surfaces in pseudo-Galilean 3-space, Int. J. Math. Anal., 9(50)(2015), 2469-2483.

Liu, H., Liu, G., Weingarten rotation surfaces in 3-dimensional de Sitter space, J. Geom., 79(2004), 156-168.

Lopez, R., Rotational linear Weingarten surfaces of hyperbolic type, Israel J. Math., 167(2008), 283-301.

Lopez, R., Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc., 52(2015), no. 3, 523-535.

Meng, H., Liu, H., Factorable surfaces in Minkowski space, Bull. Korean Math. Soc., 46(2009), no. 1, 155-169.

Mihai, I., On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms, Nonlinear Analysis, 95(2014), 714-720.

Mihai, I., On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms, Tohoku J. Math, to appear.

Mihai, A., Geometric inequalities for purely real submanifolds in complex space forms, Results Math., 55(2009), 457-468.

Milin-Sipus, Z., Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hung., 68(2014), 160-175.

Pottmann, H., Opitz, K., Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces, Comput. Aided Geom. Design, 11(1994), 655-674.

Pottmann, H., Grohs, P., Mitra, N.J., Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math., 31(2009), 391-419.

Sachs, H., Isotrope Geometrie des Raumes, Vieweg-Verlag, Braunschweig, Wiesbaden, 1990.

Strubecker, K., Differentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch., 48(1942), 369-427.

Van de Woestyne, I., Minimal homothetical hypersurfaces of a semi-Euclidean space, Results Math., 27(1995), 333-342.

Yu, Y., Liu, H., The factorable minimal surfaces, Proceedings of The Eleventh International Workshop on Diff. Geom., 11(2007), 33-39.

Yoon, D.W., Tuncer, Y., Karacan, M.K., Non-degenerate quadric surfaces of Weingarten type, Annales Polonici Math., 107(2013), 59-69.

Downloads

Published

2017-06-15

How to Cite

AYDIN, M. E., & OGRENMIS, A. O. (2017). Linear Weingarten factorable surfaces in isotropic spaces. Studia Universitatis Babeș-Bolyai Mathematica, 62(2), 261–268. https://doi.org/10.24193/subbmath.2017.2.11

Issue

Section

Articles

Similar Articles

<< < 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.