Majorization for certain classes of analytic functions defined by convolution structure

Authors

DOI:

https://doi.org/10.24193/subbmath.2017.2.04

Keywords:

Analytic functions, starlike function, Hadamard product, majorization.

Abstract

In this paper, we investigate majorization properties for certain classes of analytic functions defined by convolution structure. Also we point out some new and known consequences of our main result.

Mathematics Subject Classification (2010): 30C45.

References

Al-Oboudi, F.M., On univalent function defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004), 1429-1436.

Aouf, M.K., Mostaafa, A.O., On a subclass of n − p−valent prestarlike functions, Comput. Math. Appl., (2008), no. 55, 851-861.

Altintas, O., Ozkan, O., Srivastava, H.M., Majorization by starlike functions of complex order, Complex Var., 46(2001), 207-218.

Catas, A., On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatog¸lu, eds.), TC Istanbul Ku˝ltu˝r University Publications, Vol. 91, TC Istanbul Ku˝ltu˝r University, Istanbul, Turkey, 2008, 241-250,

El-Ashwah, R.M., Majorization properties for subclass of analytic p-valent functions defined by the generalized hypergeometric function, Tamsui. Oxf. J. Infor. Math. Scie., 28(2012), no. 4, 395-405.

El-Ashwah, R.M., Aouf, M.K., Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput Modelling, 51(2010), 349-360.

El-Ashwah, R.M., Aouf, M.K., Majorization properties for subclasses of analytic p-valent functions defined by convolution, Kyungpook Math. J., 53(2013), 615-624.

Kamali, M., Orhan, H., On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc., 41(2004), no. 1, 53-71.

Liu, J.L., Owa, S., Properties of certain integral operators, Internat. J. Math. Math. Sci., 3(2004), no. 1, 69-75.

MacGregor, T.H., Majorization by univalent functions, Duke Math. J., 34(1967), 95-102. [11] Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York. and Basel, 2000.

Mostafa, A.O., Differential sandwich theorem for p−valent functions related to certain operator, Acta Univ. Apulensis, 30(2012), 221-235.

Nasr, M.A., Aouf, M.K., Starlike function of complex order, J. Natur. Sci. Math., 25(1985), no. 1, 1-12.

Nehari, Z., Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto and London, 1952.

Downloads

Published

2017-06-15

How to Cite

ALI, E. E. (2017). Majorization for certain classes of analytic functions defined by convolution structure. Studia Universitatis Babeș-Bolyai Mathematica, 62(2), 175–181. https://doi.org/10.24193/subbmath.2017.2.04

Issue

Section

Articles

Similar Articles

<< < 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.