Determinantal inequalities for J -accretive dissipative matrices
DOI:
https://doi.org/10.24193/subbmath.2017.0009Keywords:
J -accretive dissipative matrix, J -selfadjoint matrix, indefinite inner norm.Abstract
In this note we determine bounds for the determinant of the sum of two J -accretive dissipative matrices with prescribed spectra.
Mathematics Subject Classification (2010): 46C20, 47A12.
References
Bebiano, N., da Providˆencia, J., A Fiedler-type Theorem for the Determinant of J - Positive matrices, Math. Inequal. Appl., (to appear).
Bebiano, N., Kovacec, A., da Providˆencia, J., The validity of Marcus-de Oliveira Conjecture for essentially Hermitian matrices, Linear Algebra Appl., 197(1994), 411-427.
Bebiano, N., Lemos, R., da Providˆencia, J., Soares, G., Further developments of Furuta inequality of indefinite type, Mathematical Inequalities and Applications, 13(2010), 523- 535.
Bognar, J., Indefinite Inner Product Spaces, Springer, 1974.
Drury, S.W., Cload, B., On the determinantal conjecture of Marcus and de Oliveira, Linear Algebra Appl., 177(1992), 105-109.
Drury, S.W., Essentially Hermitian matrices revisited, Electronic Journal of Linear Algebra, 15(2006), 285-296.
Fiedler, M., The determinant of the sum of Hermitian matrices, Proc. Amer. Math. Soc., 30(1971), 27-31.
Li, C.-K., Poon, Y.-T., Sze, N.-S., Ranks and determinants of the sum of matrices from unitary orbits, Linear and Multilinear Algebra, 56(2008), 108-130.
Marcus, M., Plucker relations and the numerical range, Indiana Univ. Math. J., 22(1973), 1137-1149.
Mc Duff, D., Salamon, D., Introduction to Symplectic Topology, Oxford Matematical Monographs, Clarendon Press, 1998.
Mehta, M.L., Matrix Theory, Selected Topics and Useful Results, Industan Publishing Corporation, New Delhi, 1971.
Nakazato, H., Bebiano, N., da Providˆencia, J., J -orthostochastic matrices of size 3 × 3 and numerical ranges of Krein space operators, Linear Algebra Appl., 407(2005), 211- 232.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.