An existence theorem for a non-autonomous second order nonlocal multivalued problem

Authors

  • Tiziana CARDINALI Perugia University Department of Mathematics and Computer Sciences 1, via Vanvitelli, 06123 Perugia, Italy, e-mail: tiziana.cardinali@unipg.it https://orcid.org/0000-0003-3802-8642
  • Serena GENTILI Perugia University Department of Mathematics and Computer Sciences 1, via Vanvitelli, 06123 Perugia, Italy, e-mail: gentilisere@hotmail.it

DOI:

https://doi.org/10.24193/subbmath.2017.0008

Keywords:

Nonlocal conditions, semilinear non-autonomous second order differential inclusion, fundamental Cauchy operator, fundamental system.

Abstract

In this paper we prove the existence of mild solutions for a nonlocal problem governed by an abstract semilinear non-autonomous second order differential inclusion, where the non-linear part is an upper-Caratheodory semicontinuous multimap. Our existence theorem is obtained thanks to the introduction of a fundamental Cauchy operator. Finally we apply our main result to provide the controllability of a problem involving a non-autonomous wave equation.

Mathematics Subject Classification (2010): 34A60, 34G25.

References

Ambrosetti, A., Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova, 39(1967), 349-360.

Bungardi, S., Cardinali, T., Rubbioni, P., Semilinear nonlocal integro-differential inclusions via vectorial measures of noncompactness, In press on Appl. Anal. (2016), http://dx.doi.org/10.1080/00036811.2016.1227969.

Couchouron, J.F., Kamenski, M., An abstract topological point of view averaging principle in the theory of differential inclusions, Nonlinear Analysis, 42(2000), 1101-1129.

Cardinali, T., Rubbioni, P., On the existence of mild solutions of semilinear evolution differential inclusions, J. Math. Anal. Appl., 308(2005), no. 2, 620-635.

Denkowski, Z., Migorski, S., Papageorgiou, N.S., An Introduction to Nonlinear Analysis, Theory, Kluwer Acad. Publ. Boston/ Dordrecht/ London, 2003.

Fattorini, H.O., Second Order Linear Differential Equations in Banach Spaces, North- Holland Publishing Co., Amsterdam, 1985.

Henr´ıquez, H.R., Existence of solutions of non-autonomous second order differential equations with infinite delay, Nonlinear Anal., 74(10)(2011), 3333-3352.

Henr´ıquez, H.R., Poblete, V., Pozo, J.C., Mild solutions of nonautonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., 412(2014), 1064-1083.

Kozak, M., A fundamental solution of a second-order differential equation in Banach space, Univ. Iagel. Acta Math., 32( 1995), 275-289.

Kamenskii, M., Obukhovskii, V., Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 7, Walter de Gruyter, Berlin, 2001.

Kisynski, J., On cosine operator functions and one-parameter groups of operators, Studia Math., 44(1972), 93-105.

Serizawa, H., Watanabe, M., Time-dependent perturbation for cosine families in Banach spaces, J. Math. 12, Houston, (1986), 579-586.

Travis, C.C., Webb, G.F., Second order differential equations in Banach space, Nonlinear Equations in Abstract Spaces, Academic Press, New York, 1978.

Vasilev, V.V., Piskarev, S.I., Differential equations in Banach spaces, II, Theory of cosine operator functions, J. Math. Sci. (N.Y.), 122(2004), 7047-7060.

Zvyagin, V., Obukhovskii, V., Zvyagin, A., On inclusions with multivalued operators and their applications to some optimization problem, J. Fixed Point Theory Appl., 16(2014), 27-82.

Downloads

Published

2017-03-01

How to Cite

CARDINALI , T., & GENTILI , S. (2017). An existence theorem for a non-autonomous second order nonlocal multivalued problem. Studia Universitatis Babeș-Bolyai Mathematica, 62(1), 101–117. https://doi.org/10.24193/subbmath.2017.0008

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.