A modified Post Widder operators preserving eᴬˣ

Authors

  • Vijay GUPTA Department of Mathematics, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi 110078, India, e-mail: vijaygupta2001@hotmail.com ORCID: 0000-0002-5768-5763 https://orcid.org/0000-0002-5768-5763
  • Gancho TACHEV Gancho TACHEV Department of Mathematics, University of Architecture Civil Engineering and Geodesy, Sofia, Bulgaria, e-mail: gtt_fte@uacg.bg

DOI:

https://doi.org/10.24193/subbmath.2022.3.11

Keywords:

Post-Widder operators, weighted approximation, quantitative estimate.

Abstract

In the present paper, we discuss the approximation properties of modified Post-Widder operators, which preserve the test function eᴬˣ. We establish weighted approximation and a direct quantitative estimate for the modified operators.

Mathematics Subject Classification (2010): 41A25, 41A30.

Received 25 November 2019; Accepted 23 March 2020.

References

Acar, T., Aral, A., Morales, D., Garrancho, P., Sz´asz-Mirakyan operators which fix exponentials, Results Math., 72(2017), 1393-1404. https://doi.org/10.1007/s00025-017-0665-9

Agratini, O., A sequence of positive linear operators associated with an approximation process, Appl. Math. Comput., 269(2015), 23-28.

Agratini, O., On an approximation process of integral type, Appl. Math. Comput., 236(2014), 195-201.

Agratini, O., Aral, A., Deniz, E., On two classes of approximation processes of integral type, Positivity, 21(2017), no. 3, 1189-1199.

Ditzian, Z., On global inverse theorems of Sz´asz and Baskakov operators, Canad. J. Math., 31(1979), no. 2, 255-263.

Gupta, V., Agrawal, D., Convergence by modified Post-Widder operators, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113(2019), no. 2, 1475-1486.

Gupta, V., Maheshwari, P., Approximation with certain Post-Widder operators, Publ. Inst. Math. (Beograd) (N.S.), 105(119)(2019), 1-6.

Gupta, V., Rassias, M.T., Moments of Linear Positive Operators and Approximation, Series: Springer Briefs in Mathematics, Springer Nature Switzerland AG, 2019.

Gupta, V., Singh, V.K., Modified Post-Widder Operators Preserving Exponential Functions, Advances in Mathematical Methods and High Performance Computing, Advances in Mechanics and Mathematics, 41, Editors V.K. Singh et al., Springer Nature Switzerland, 2019, 181-192.

Gupta, V., Tachev, G., Approximation with Positive Linear Operators and Linear Combinations, Series: Developments in Mathematics, Vol. 50, Springer, 2017.

Gupta, V., Tachev, G., Some results on Post-Widder operators preserving test function xr , Kragujevac J. Math., 46(2022), no. 1, 149-165.

Tachev, G., Gupta, V., Aral, A., Voronovskja’s theorem for functions with exponential growth, Georgian Math. J., 27(2020) no. 3, 459-468. https://doi.org/10.1515/gmj-2018-0041

Widder, D.V., The Laplace Transform, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1941.

Downloads

Published

2022-10-24

How to Cite

GUPTA, V., & Gancho TACHEV, G. T. (2022). A modified Post Widder operators preserving eᴬˣ. Studia Universitatis Babeș-Bolyai Mathematica, 67(3), 599–606. https://doi.org/10.24193/subbmath.2022.3.11

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.