A strong converse inequality for the iterated Boolean sums of the Bernstein operator
DOI:
https://doi.org/10.24193/subbmath.2022.3.10Keywords:
Bernstein polynomials, Boolean sums, strong converse inequality, mod- ulus of smoothness, K-functional.Abstract
We establish a two-term strong converse estimate of the rate of approximation by the iterated Boolean sums of the Bernstein operator. The characterization is stated in terms of appropriate moduli of smoothness or K-functionals.
Mathematics Subject Classification (2010): 41A10, 41A17, 41A25, 41A27, 41A35, 41A40.
Received 13 November 2019; Accepted 18 February 2020.
References
Cheng, L., Zhou, X., Strong inequalities for the iterated Boolean sums of Bernstein operators, Stud. Univ. Babe¸s-Bolyai Math., 64(2019), no. 3, 299-304.
DeVore, R.A., Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
Ding, C., Cao, F., K-functionals and multivariate Bernstein polynomials, J. Approx. Theory, 155(2008), 125-135.
Ditzian, Z., Ivanov, K.G., Strong converse inequalities, J. Anal. Math., 61(1993), 61-111.
Ditzian, Z., Totik, V., Moduli of Smoothness, Springer-Verlag, New York, 1987.
Draganov, B.R., On simultaneous approximation by iterated Boolean sums of Bernstein operators, Results Math., 66(2014), 21-41.
Draganov, B.R., Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums, J. Approx. Theory, 200(2015), 92-135.
Draganov, B.R., Gadjev, I., Direct and converse Voronovskaya estimates for the Bernstein operator, Results Math., 73:11(2018).
Gonska, H., Zhou, X.-L., Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comput. Appl. Math., 53(1994), 21-31.
Knoop, H.-B., Zhou, X.-L., The lower estimate for linear positive operators (II), Results Math., 25(1994), 315-330.
Kopotun, K., Leviatan, D., Shevchuk, I.A., New moduli of smoothness: weighted DT moduli revisited and applied, Constr. Approx., 42(2015), 129-159.
Totik, V., Approximation by Bernstein polynomials, Amer. J. Math., 116(1994), 995-1018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.