S˘al˘agean-type harmonic multivalent functions defined by q-difference operator
DOI:
https://doi.org/10.24193/subbmath.2022.3.03Keywords:
q−calculus, q−difference operator, Sălăgean differential operator, multivalent function.Abstract
We introduce a new subclass of S˘al˘agean-type harmonic multivalent functions by using q−difference operator. We investigate sufficient coefficient estimates, distortion bounds, extreme points, convolution properties and neighborhood for the functions belonging to this function class.
Mathematics Subject Classification (2010): 30C50, 30C99, 81Q99.
Received 6 November 2019; Accepted 8 February 2020.
References
Ahuja, O.P., Cetinkaya, A., Use of quantum calculus approach in mathematical sciences and its role in geometric function theory, National Conference on Mathematical Analysis and Computing, 2018, AIP Conference Proceedings 2095, 020001 (2019).
Ahuja, O.P., Jahangiri, J.M., Multivalent harmonic starlike functions, Ann. Univ.Mariae Curie-Sklodowska Sect. A, 55(2001), no. 1, 1-13.
Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
Duren, P.L., Hengartner, W., Laugesen, R.S., The argument principle for harmonic functions, Amer. Math. Monthly, 103(1996), no. 5, 411-415.
Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, 2004.
Gu¨ney, H.O., Ahuja, O.P., Inequalities involving multipliers for multivalent harmonic functions, J. Ineq. Pure Appl. Math., 7(2006), no. 5, 1-9.
Jackson, F.H., On q−functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1909), 253-281.
Jackson, F.H., q−difference equations, Amer. J. Math., 32(1910), 305-314.
Jahangiri, J.M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477.
Jahangiri, J.M., Murugusundaramoorthy, G., Vijaya, K., S˘al˘agean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2(2002), 77-82.
Jahangiri, J.M., S¸eker, B., Su¨mer Eker, S., S˘al˘agean-type harmonic multivalent functions, Acta Univ. Apulensis Math. Inform., 18(2009), 233-244.
S˘al˘agean, G.S., Subclasses of univalent functions, In: Complex Analysis, Fifth Romanian Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, (1983), 362-372.
Vijaya, K., Studies on certain subclasses of harmonic functions, Ph.D. Thesis, VIT University, Vellore, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.