Fekete-Szegő inequality of bi-starlike and bi-convex functions of order b associated with symmetric q-derivative in conic domains

Authors

  • Bharavi Sharma RAYAPROLU Department of Mathematics, Kakatiya University, Warangal-506 009, Telangana, India, e-mail: rbsharma005@gmail.com https://orcid.org/0000-0003-2814-9774
  • Rajya Laxmi KALIKOTA Department of Mathematics, SRIIT, Hyderabad, India, e-mail: rajyalaxmi2206@gmail.com
  • Nanjundan MAGESH Post-Graduate and Research Department of Mathematics Government Arts College for Men, Krishnagiri - 635 001, Tamilnadu, India, (Corresponding author) e-mail: nmagi_2000@yahoo.co.in https://orcid.org/0000-0002-0764-8390

DOI:

https://doi.org/10.24193/subbmath.2022.3.02

Keywords:

Analytic functions, bi-univalent functions, bi-starlike functions, bi- convex functions, conic domain, Fekete-Szegő inequality, q-differential operator, univalent functions.

Abstract

In this paper, two new subclasses of bi-univalent functions related to conic domains are defined by making use of symmetric q-differential operator. The initial bounds for Fekete-Szegő inequality for the functions f in these classes are estimated.

Mathematics Subject Classification (2010): 30C45, 30C50.

Received 20 October 2019; Accepted 13 February 2020.

References

Abirami, C., Magesh, N., Gatti, N.B., Yamini, J., Horadam polynomial coefficient estimates for a class of λ−bi-pseudo-starlike functions, J. Anal., (2020), 1-10 (https://doi.org/10.1007/s41478-020-00224-2).

Abirami, C., Magesh, N., Yamini, J., Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal., 2020(2020), Art. ID 7391058, 1-8.

Ali, R.M., Lee, S.K., Ravichandran, V., Supramanian, S., Coefficient estimates for bi- univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), no. 3, 344-351.

Altınkaya, S., Yalc¸ın, S., Upper bound of second Hankel determinant for bi-Bazileviˇc functions, Mediterr. J. Math., 13(2016), no. 6, 4081-4090.

Altınkaya, S., Yalc¸ın, S., Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q− derivative operator by means of the chebyshev polynomials, Asia Pacific Journal of Mathematics, 4(2017), no. 2, 90-99.

Altınkaya, S., Yalc¸ın, S., On the Chebyshev polynomial coefficient problem of some sub- classes of bi-univalent functions, Gulf J. Math., 5(2017), no. 3, 34-40.

Annamalai, S., Sivasubramanian, S., Ramachandran, C., Hankel determinant for a class of analytic functions involving conical domains defined by subordination, Math. Slovaca, 67(2017), no. 4, 945-956.

Bharati, R., Parvatham, R., Swaminathan, A., On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), no. 1, 17-32.

Brahim, K., Sidomou, Y., On some symmetric q-special functions, Matematiche (Catania), 68(2013), no. 2, 107-122.

Goodman, A.W., Univalent Functions, Vol. I & II, Mariner Publishing Co., Inc., Tampa, FL, 1983.

Goodman, A.W., On uniformly convex functions, Ann. Polon. Math., 56(1991), no. 1, 87-92.

Goodman, A.W., On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), no. 2, 364-370.

Jackson, F.H., On q−functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1908), 253-281.

Jahangiri, J.M., Magesh, N., Yamini, J., Fekete-Szeg¨o inequalities for classes of bi- starlike and bi-convex functions, Electron. J. Math. Anal. Appl., 3(2015), no. 1, 133-140.

Kanas, S., Wisniowska, A., Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000), no. 4, 647-657.

Kanas, S., Wisniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), no. 1-2, 327-336.

Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.

Ma, W.C., Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.

Ma, W.C., Minda, D., Uniformly convex functions, II, Ann. Polon. Math., 58(1993), no. 3, 275-285.

Nishiwaki, J., Owa, S., Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comput., 187(2007), no. 1, 350-355.

Orhan, H., Magesh, N., Balaji, V.K., Fekete-Szeg¨o problem for certain classes of Ma- Minda bi-univalent functions, Afr. Mat., 27(2016), no. 5-6, 889-897.

Orhan, H., Magesh, N., Yamini, J., Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40(2016), no. 3, 679-687.

Raina, R.K., Soko´l, J., On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44(2015), no. 6, 1427-1433.

Rønning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 45(1991), 117-122.

Shams, S., Kulkarni, S.R., Jahangiri, J.M., Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 2004, no. 53-56, 2959-2961.

Sim, Y.J., Kwon, O.S., Cho, N.E., Srivastava, H.M., Some classes of analytic functions associated with conic regions, Taiwanese J. Math., 16(2012), no. 1, 387-408.

Srivastava, H.M., Operators of basic (or q−) calculus and fractional q−calculus and their applications in Geometric Function Theory of Complex Analysis, Iran J. Sci. Technol Trans Sci., (2020), 1-18.

Srivastava, H.M., Bulut, S., C¸ a˘glar, M., Ya˘gmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(2013), no. 5, 831-842.

Srivastava, H.M., Eker, S.S., Ali, R.M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), no. 8, 1839-1845.

Srivastava, H.M., Gaboury, S., Ghanim, F., Initial coefficient estimates for some sub- classes of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 36(2016), no. 3, 863-871.

Srivastava, H.M., Gaboury, S., Ghanim, F., Coefficient estimates for some general sub- classes of analytic and bi-univalent functions, Afr. Mat., 28(2017), no. 5-6, 693-706.

Srivastava, H.M., Magesh, N., Yamini, J., Initial coefficient estimates for bi-λ-convex and bi-µ-starlike functions connected with arithmetic and geometric means, Electron. J. Math. Anal. Appl., 2(2014), no. 2, 152-162.

Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi- univalent functions, Appl. Math. Lett., 23(2010), no. 10, 1188-1192.

Tang, H., Srivastava, H.M., Sivasubramanian, S., Gurusamy, P., The Fekete-Szeg¨o functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), no. 4, 1063-1092.

Zaprawa, P., On the Fekete-Szeg¨o problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), no. 1, 169-178.

Downloads

Published

2022-09-20

How to Cite

RAYAPROLU, B. S., KALIKOTA, R. L., & MAGESH, N. (2022). Fekete-Szegő inequality of bi-starlike and bi-convex functions of order b associated with symmetric q-derivative in conic domains. Studia Universitatis Babeș-Bolyai Mathematica, 67(3), 475–487. https://doi.org/10.24193/subbmath.2022.3.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.