Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach

Authors

  • Tuğba AKYEL Maltepe University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering, 34857 Maltepe/Istanbul, Turkey, e-mail: tugbaakyel@maltepe.edu.tr
  • Massimo LANZA DE CRISTOFORIS Universit`a degli Studi di Padova, Dipartimento di Matematica ‘Tullio Levi-Civita’, Via Trieste 63, Padova 35121, Italy, e-mail: mldc@math.unipd.it

DOI:

https://doi.org/10.24193/subbmath.2022.2.14

Keywords:

Helmholtz equation, microscopic behavior, real analytic continuation, singularly perturbed domain, transmission problem.

Abstract

Let Ωi, Ωo be bounded open connected subsets of Rn that contain the origin. Let Ω(E) ≡ Ωo \ Ei for small E > 0. Then we consider a linear transmission problem for the Helmholtz equation in the pair of domains Ei and Ω(E) with Neumann boundary conditions on o. Under appropriate conditions on the wave numbers in Ei and Ω(E) and on the parameters involved in the transmission conditions on E∂i, the transmission problem has a unique solution (ui(E, ·), uo(E, ·)) for small values of E > 0. Here ui(E, ·) and uo(E, ·) solve the Helmholtz equation in Ei and Ω(E), respectively. Then we prove that if ξ ∈ Ωi and ξ ∈ Rn \Ωi then the rescaled solutions ui(E, ) and uo(E, ) can be expanded into a convergent power expansion of E, κnE log E, δ2,n log1 E, κnE log2 E for E small enough. Here κn = 1 if n is even and κn = 0 if n is odd and δ2,2 ≡ 1 and δ2,n ≡ 0 if n ≥ 3.

Mathematics Subject Classification (2010): 35J05, 35R30 41A60, 45F15, 47H30, 78A30.

Received 27 January 2022; Accepted 9 March 2022.

References

Akyel, T., Lanza de Cristoforis, M., Asymptotic behaviour of the solutions of a transmission problem for the Helmholtz equation: A functional analytic approach, Mathematical Methods in the Applied Sciences, 45(2022), 5360-5387.

Ammari, H., Iakovleva, E., Moskow, S., Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal., 34(2003), 882-900.

Ammari, H., Vogelius, M.S., Volkov, D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations, J. Math. Pures Appl., 80(2001), 769-814.

Ammari, M.S., Volkov, D., Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter, Journal of Computational Physics, 189(2003), 371-389.

Cartan, H., Cours de Calcul Differentiel, Hermann Paris, 1967.

Cherepanov, G.P., Mechanics of Large Destructions, Nauka, Moscow 1974.

Cherepanov, G.P., Mechanics of Destruction of Composite Materials, Nauka, Moscow 1983.

Cole, J.D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968.

Colton, D.L., Kress, R., Integral Equation Methods in Scattering Theory, Society for Industrial and Applied Mathematics, 2013.

Dalla Riva, M., Lanza de Cristoforis, M., A perturbation result for the layer potentials of general second order differential operators with constant coefficients, Journal of Applied Functional Analysis, 5(2010), 10-30.

Dalla Riva, M., Lanza de Cristoforis, M., Musolino, P., Singularly Perturbed Boundary Value Problems. A Functional Analytic Approach, Springer, Cham, 2021.

Hansen, D.J., Poignard, C., Vogelius, M.S., Asymptotically precise norm estimates of scattering from a small circular inhomogeneity, Applicable Analysis, 86(2007), 433-458.

Il’in, A.M., Matching of asymptotic expansions of solutions of boundary value problems, Translated from the Russian by V. Minachin [V. V. Minakhin]. Translations of Mathematical Monographs, 102. American Mathematical Society, Providence, RI, 1992.

Lanza de Cristoforis, M., Properties and Pathologies of the composition and inversion operators in Schauder spaces, Rend. Accad. Naz. Sci. XL, 15(1991), 93-109.

Lanza de Cristoforis, M., Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: A functional analytic approach, Complex Var. Elliptic Equ., 52(2007), 945-977.

Lanza de Cristoforis, M., Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach. Revista Matematica Complutense, 25(2012), 369-412.

Lanza de Cristoforis, M., Musolino, P., A real analyticity result for a nonlinear integral operator, J. Integral Equations Appl., 25(2013), 21-46.

Lanza de Cristoforis, M., Rossi, L., Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density, J. Integral Equations Appl., 16(2004), 137-174.

Lanza de Cristoforis, M., Rossi, L., Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density, Analytic Methods of Analysis and Differential Equations, AMADE 2006, Eds. A.A. Kilbas and S.V. Rogosin, Cambridge Scientific Publishers, Cambridge (UK), (2008), 193-220.

Lebedev, N.N., Special Functions and Their Applications, Revised Edition, Translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected re- publication, Dover Publications, Inc., New York, 1972.

Mazya, V.G., Nazarov, S.A., Plamenewskii, B.A., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, I, II, (translation of the original in German published by Akademie Verlag 1991), Oper. Theory Adv. Appl., 111, 112, Birkha¨user Verlag, Basel, 2000.

Nayfeh, A.H., Perturbation Methods, Wiley-Interscience. New York, 1973.

Prodi, G., Ambrosetti, A., Analisi Non Lineare, Editrice Tecnico Scientifica, Pisa, 1973. [24] Van Dyke, M.D., Perturbation Methods in Fluid Mechanics, Academic Press, New York 1964.

Vogelius, M.S., Volkov, D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, Mathematical Modelling and Numerical Analysis, 34(2000), 723-748.

Downloads

Published

2022-06-10

How to Cite

AKYEL, T., & LANZA DE CRISTOFORIS, M. (2022). Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 383–402. https://doi.org/10.24193/subbmath.2022.2.14

Issue

Section

Articles

Similar Articles

<< < 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.