Polynomial estimates for solutions of parametric elliptic equations on complete manifolds

Authors

  • Mirela KOHR Faculty of Mathematics and Computer Science, Babe¸s-Bolyai University, Cluj-Napoca, Romania, e-mail: mkohr@math.ubbcluj.ro
  • Simon LABRUNIE Universit´e de Lorraine, Nancy, France, e-mail: simon.labrunie@univ-lorraine.fr
  • Hassan MOHSEN Universit´e de Lorraine, Nancy, France, e-mail: hassan.mohsen@univ-lorraine.fr
  • Victor NISTOR Universit´e de Lorraine, Metz, France, e-mail: victor.nistor@univ-lorraine.fr

DOI:

https://doi.org/10.24193/subbmath.2022.2.13

Keywords:

Parametric elliptic equations, complete manifolds, the Fr´echet Finiteness Condition (FFC), Sobolev spaces, uncertainty quantification.

Abstract

Let $P : \CI(M; E) \to \CI(M; F)$ be an order $\mu$ differential operator with smooth enough coefficients $a = (a^{[0]}, a^{[1]}, \ldots, a^{[\mu]})$. Let $P_k := P : H^{s_0 + k +\mu}(M; E) \to H^{s_0 + k}(M; F)$. We prove polynomial norm estimates for the solution $P_0^{-1}f$ of the form

∥P−10f∥Hs0+k+μ(M;E)≤C∑q=0k∥P−10∥q+1∥a∥qW|s0|+k∥f∥Hs0+k−q,‖

P0−1f‖Hs0+k+μ(M;E)≤C∑q=0k‖P0−1‖q+1‖a‖W|s0|+kq‖f‖Hs0+k−q,

(thus in higher order Sobolev spaces, which amounts also to a parametric regularity result). In particular, $P_k$ is invertible, if $a$ is smooth enough. The assumptions are that $E, F \to M$ are Hermitian vector bundles and that $M$ is a complete manifold satisfying the Fr\'echet Finiteness Condition (FFC), which was introduced in (Kohr and Nistor, Annals of Global Analysis and Geometry, 2022).
These estimates are useful for uncertainty quantification, since the coefficient $a$ can be regarded as a vector valued random
variable. We use these results to prove integrability of the norm $\|P_k^{-1}f\|$ of the solution of $P_k u = f$ with respect to suitable Gaussian measures.


Mathematics Subject Classification (2010): 35R01, 35J75, 46E35, 65N75.

Received 27 April 2022; Accepted 2 May 2022.

References

Amann, H., Function spaces on singular manifolds. Math. Nachr. 286(2013), no. 5-6 , 436–475.

Ammann, B., Grosse, N., Nistor, V., Well-posedness of the Laplacian on manifolds with boundary and bounded geometry, Math. Nachr., 292(2019), no. 6, 1213-1237.

Banjai, L., Ot´arola, E., A PDE approach to fractional diffusion: a space-fractional wave equation, Numer. Math., 143(2019), no. 1, 177-222.

Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.

Bruning, J., Geyler, V., Pankrashkin, K., Spectra of self-adjoint extensions and applications to solvable Schrodinger operators, Rev. Math. Phys., 20(2008), no. 1, 1-70.

Bacuta, C., Li, H., Nistor, V., Differential operators on domains with conical points: precise uniform regularity estimates, Rev. Roumaine Math. Pures Appl., 62(2017), no. 3, 383-411.

Cohen, A., Devore, R., Schwab, C., Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl. (Singap.), 9(2011), no. 1, 11-47.

Dauge, M., Elliptic Boundary Value Problems on Corner Domains, vol. 1341 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions.

Große, N., Nistor, V., Uniform Shapiro-Lopatinski conditions and boundary value problems on manifolds with bounded geometry, Potential Anal., 53(2020), no. 2, 407-447.

Große, N., Schneider, C., Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., 286(2013), no. 16, 1586-1613.

Harbrecht, H., Schmidlin, M., Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion, Stoch. Partial Differ. Equ. Anal. Comput., 8(2020), no. 1, 54-81.

Hebey, E., Sobolev Spaces on Riemannian Manifolds, vol. 1635 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.

Herrmann, L., Keller, M., Schwab, C., Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems, Math. Comp., 90(330)(2021), 1831-1860.

Kohr, M., Nistor, V., Sobolev spaces and r-differential operators on manifolds I: Basic properties and weighted spaces, Ann. Global Anal. Geom., (2022).

Le Maıtre, O.P., Knio, O.M., Najm, H.N., Ghanem, R.G., Uncertainty propagation using Wiener-Haar expansions, J. Comput. Phys., 197(2004), no. 1, 28-57.

Li, H., Nistor, V., Qiao, Y., Uniform shift estimates for transmission problems and optimal rates of convergence for the parametric finite element method, In: Numerical Analysis and its Applications, vol. 8236 of Lecture Notes in Comput. Sci. Springer, Heidelberg, 2013, 12-23.

Lions, J.-L., Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth, Die Grundlehren der Mathematischen Wissenschaften, Band 181.

Mohsen, H., Labrunie, S., Nistor, V., Estimations polynomiales pour les solutions des probl`emes de transmission sur cylindres, preprint, 2022.

Mohsen, H., Labrunie, S., Nistor, V., Polynomial bounds for the solutions of transmission problems on smooth, bounded domains, in final preparation.

Nistor, V., Schwab, C., High-order Galerkin approximations for parametric second-order elliptic partial differential equations, Math. Models Methods Appl. Sci., 23(2013), no. 9, 1729-1760.

Taylor, M., Partial Differential Equations, I. Basic Theory, second ed., vol. 115 of Applied Mathematical Sciences, Springer, New York, 2011.

Downloads

Published

2022-10-21

How to Cite

KOHR, M., LABRUNIE, S., MOHSEN, H., & NISTOR, V. (2022). Polynomial estimates for solutions of parametric elliptic equations on complete manifolds. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 369–382. https://doi.org/10.24193/subbmath.2022.2.13

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.