Janowski subclasses of starlike mappings
DOI:
https://doi.org/10.24193/subbmath.2022.2.11Keywords:
Biholomorphic mapping, locally biholomorphic mapping starlike mapping, almost starlike mapping.Abstract
In this paper, two subclasses of biholomorphic starlike mappings named Janowski starlike and Janowski almost starlike with complex parameters are in- troduced and studied. We determine M such that holomorphic mappings f which satisfy the condition lDf (z) − Il ≤ M , z ∈ Bn, are Janowski starlike, respectively Janowski almost starlike. We also derive sufficient conditions for normalized holomorphic mappings (expressed in terms of their coefficient bounds) to belong to one of the subclasses of mappings mentioned above.
Mathematics Subject Classification (2010): 32H02, 30C45.
Received 19 February 2022; Accepted 17 March 2022.
References
Ali, R.M., Haji Mohd, M., Keong, L.S., Ravichandran, V., Radii of starlikeness, parabolic starlikeness and strong starlikeness for Janowski starlike functions with complex parameters, Tamsui Oxf. J. Inf. Math. Sci., 27(2011), no. 3, 253-267.
Curt, P., A Marx-Strohhacker theorem in several complex variables, Mathematica, 39(62)(1997), no. 1, 59-70.
Curt, P., Special Chapters of Geometric Function Theory of Several Complex Variables, (Romanian), Editura Albastra, Cluj-Napoca, 2001.
Curt, P., Janowski starlikeness in several complex variables and Hilbert spaces, Taiwanese J. Math., 18(2014), no. 4, 1171-1184.
Graham, I., Hamada, H, Kohr, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54(2002), 324-351.
Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, 2003.
Janowski, W., Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28(1973), 297-326.
Kohr, G., On some sufficient conditions of almost starlikeness of order 1 in Cn, Stud. Univ. Babes-Bolyai Math., 41(1996), no. 3, 51-55.
Kohr, G., Certain partial differential inequalities and applications for holomorphic map- pings defined on the unit ball of Cn, Ann. Univ. Mariae Curie-Skl. Sect. A, 50(1996), 87-94.
Kuroki, K., Owa, S., Srivastava, H.M., Some subordination criteria for analytic functions, Bulletin de la Societe des Sciences et des Lettres de Lodz, 52(2007), 27-36.
Li, X., Zhang, X., Janowski-starlike mappings of complex order λ on the unit ball Bn, Results Math., 74(2019), art. no. 141.
Liu, M.S., Zhu Y.C., On some sufficient conditions for starlikeness of order α in Cn, Taiwanese J. Math., 10(2006), no. 5, 1169-1182.
Liu, M.S., Zhu Y.C., The radius of convexity and the sufficient condition for starlike mappings, Bull. Malays. Math. Sci. Soc., 35(2012), no. 2, 425-433.
Manu, A., Extension operators preserving Janowski classes of univalent functions, Taiwanese J. Math., 24(2020), no. 1, 97-117.
Manu, A., The Muir extension operator and Janowski univalent functions, Complex Var. Elliptic Equ., 65(2020), no. 6, 897-919.
Pfaltzgraff, J.A., Subordination chains and univalence of holomorphic mappings in Cn, Math. Ann., 210(1974), 55-68.
Silverman H., Subclasses of starlike functions, Rev. Roum. Math. Pures et Appl., 23(1978), 1093-1099.
Silverman H., Silvia E.M., Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37(1985), no. 1, 48-61.
Suffridge T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes Math., 599(1976), 146-159.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.