Shearing maps and a Runge map of the unit ball which does not embed into a Loewner chain with range Cⁿ

Authors

DOI:

https://doi.org/10.24193/subbmath.2022.2.03

Keywords:

Loewner chains, geometric function theory, embedding problem.

Abstract

In this paper we study the class of “shearing” holomorphic maps of the unit ball of the form (z, w) i→ (z + g(w), w). Besides general properties, we use such maps to construct an example of a normalized univalent map of the ball onto a Runge domain in Cn which however cannot be embedded into a Loewner chain whose range is Cn.

Mathematics Subject Classification (2010): 32H02, 32T15, 32A30, 30C55.

Received 2 February 2022; Accepted 9 March 2022.

References

Anders´en, E., Lempert, L., On the group of holomorphic automorphisms of Cn, Invent. Math., 110(1992), 371-388.

Arosio, L., Bracci, F., Wold, E.F., Embedding univalent functions in filtering Loewner chains in higher dimensions, Proc. Amer. Math. Soc., 143(2015), 1627-1634.

Arosio, L., Bracci, F., Wold, E.F., Solving the Loewner PDE in complete hyperbolic starlike domains of CN , Adv. Math., 242(2013), 209-216.

Bracci, F., Shearing process and an example of a bounded support function in S0(B2), Comput. Methods Funct. Theory, 15(2015), 151-157.

Chen, H., Gauthier, P., Bloch constants in several variables, Trans. Amer. Math. Soc., 353(2001), 1371-1386.

Docquier, F., Grauert, H., Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140(1960), 94-123.

Fornæss, J.E., Wold, E.F., An embedding of the unit ball that does not embed into a Loewner chain, Math. Z., 296(2020), no. 1-2, 73-78.

Forstneri˘c, F., Interpolation by holomorphic automorphisms and embeddings in Cn, J. Geom. Anal., 9(1999), no. 1, 93-117.

Graham, I., Hamada, H., Kohr, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54(2002), no. 2, 324-351.

Graham, I., Hamada, H., Kohr, G., Radius problems for holomorphic mappings on the unit ball in Cn, Math. Nach., 279(2006), no. 13-14, 1474-1490.

Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Monogr. Textb. Pure Appl. Math., vol. 255, Marcel Dekker Inc., New York, 2003.

Graham, I., Kohr, G., Pfaltzgraff, J.A., The general solution of the Loewner differential equation on the unit ball in Cn, Contemp. Math. (AMS), 382(2005), 191-203.

Hamada, H., Kohr, G., Pluriharmonic mappings in Cn and complex Banach spaces, J. Math. Anal. Appl., 426(2015), 635-658.

Kohr, G., Using the method of Loewner chains to introduce some subclasses of biholo- morphic mappings in Cn, Rev. Roum. Math. Pures Appl., 46(2001), 743-760.

Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.

Downloads

Published

2022-06-10

How to Cite

BRACCI, F., & GUMENYUK, P. (2022). Shearing maps and a Runge map of the unit ball which does not embed into a Loewner chain with range Cⁿ. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 251–258. https://doi.org/10.24193/subbmath.2022.2.03

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.