Fractional Hadamard and Fej´er-Hadamard inequalities for exponentially m-convex function
DOI:
https://doi.org/10.24193/subbmath.2021.4.03Keywords:
Convex functions, exponentially m-convex functions, Hadamard inequality, Fejer-Hadamard inequality, fractional integral operators, Mittag-Leffler function.Abstract
Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fej´er-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function. Exponentially m-convexity is utilized to establish these inequalities. By fixing parameters involved in the Mittag-Leffler function Hadamard and the Fej´er-Hadamard inequalities for various well known fractional integral operators can be obtained.
Mathematics Subject Classification (2010): 26B25, 26A33, 26A51, 33E12.
References
Abbas, G., Farid, G., Hadamard and Fejer-Hadamard type inequalities for harmonically convex functions via generalized fractional integrals, J. Anal., 25(2017), no. 1, 107-119.
Andric, M., Farid, G., Mehmood, S., Pecaric, J., Polya-Szego and Chebyshev types inequalities via an extended generalized Mittag-Leffler function, Math. Ineq. Appl., 22(2019), no. 4, 1365-1377.
Andric, M., Farid, G., Pecaric, J., A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21(2018), no. 5, 1377-1395.
Antczak, T., (p, r)-invex sets and functions, J. Math. Anal. Appl., 263(2001), 355-379.
Chen, F., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 2014(2014), pp 7.
Chen, H., Katugampola, U.N., Hermite-Hadamard-Fej´er type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446(2017), 1274-1291.
Dragomir, S.S., Gomm, I., Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math., 60(2015), no. 4, 527- 534.
Farid, G., Hadamard and Fejer-Hadamard inequalities for generalized fractional integral involving special functions, Konuralp J. Math., 4(2016), no. 1, 108-113.
Farid, G., A Treatment of the Hadamard inequality due to m-convexity via generalized fractional integral, J. Fract. Calc. Appl., 9(2018), no. 1, 8-14.
Farid, G., Khan, K.A., Latif, N., Rehman, A.U., Mehmood, S., General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag- Leffler function, J. Inequal. Appl., 2018(2018), 243 pp.
Farid, G., Rehman, A.U., Mehmood, S., Hadamard and Fejer-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci., 8(2018), no. 5, 630-643.
Farid, G., Rehman, A.U., Tariq, B., On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Stud. Univ. Babes-Bolyai, Math., 62(2017), no. 2, 141-150.
Fejer, L., Uberdie Fourierreihen II, Math. Naturwiss Anz Ungar. Akad. Wiss., 24(1906), 369-390.
Kang, S.M., Farid, G., Nazeer, W., Mehmood, S., (h, m)-convex functions and associated fractional Hadamard and Fejer-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019(2019), 78 pp.
Mittag-Leffler, G.M., Sur la nouvelle fonction Eσ (x), Comptes Rendus Hebdomadaires des Seances de l’ Academie des Sciences Paris, 137(1903), 554-558.
Prabhakar, T.R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.
Rahman, G., Baleanu, D., Qurashi, M.A., Purohit, S.D., Mubeen, S., Arshad, M., The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10(2017), 4244-4253.
Rashid, S., Noor, M.A., Noor, K.I., Fractional exponentially m-convex functions and inequalities, Int. J. Anal. Appl., 17(2019), no. 3, 464-478.
Rashid, S., Safdar, F., Akdemir, A.O., Noor, M.A., Noor, K.I., Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019(2019), 299 pp.
Salim, T.O., Faraj, A.W., A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3(2012), no. 5, 1-13.
Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N., Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, J. Math. Comput. Model, 57(2013), no. 9, 2403-2407.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.