Positivity of sums and integrals for n-convex functions via the Fink identity and new Green functions
DOI:
https://doi.org/10.24193/subbmath.2021.4.02Keywords:
n-convex functions, Fink identity, Green function, Cˇebyˇsev functional.Abstract
We consider positivity of sum $\sum_{i=1}^np_if(x_i)$ involving convex functions of higher order. Analogous for integral $\int_a^bp(x)f(g(x))dx$ is also given. Representation of a function $f$ via the Fink identity and the Green function leads us to identities for which we obtain conditions for positivity of the mentioned sum and integral. We obtain bounds for integral remainders which occur in those identities as well as corresponding mean value theorems.
Mathematics Subject Classification (2010): 26A51, 26D15, 26D20.
References
Baloch, I.A., Pecaric, J., Praljak, M., Generalization of Levinson’s inequality, J. Math. Inequal., 9(2015), 571-586.
Butt, S.I., Mehmood, N., Pecaric, J., New generalization of Popoviciu type inequalities via new Green functions and Taylor’s formula, submitted.
Cerone, P., Dragomir, S.S., Some new Owstrowski-type bounds for the Cebysev functional and applications, J. Math. Inequal., 8(2014), no. 1, 159-170.
Fink, A.M., Bounds of the deviation of a function from its avereges, Czechoslovak Math. J., 42(117)(1992), 289-310.
Khan, A.R., Latif, N., Pecaric, J.E., Exponential convexity for majorization, J. Inequal. Appl., 2012(2012): 105, 1-13.
Khan, A.R., Pecaric, J., Lipanovic, M.R., n-Exponential convexity for Jensen-type in- equalities, J. Math. Inequal., 7(2013), no. 3, 313-335.
Khan, A.R., Pecaric, J.E., Praljak, M., Popoviciu type inequalities for n-convex functions via extension of Montgomery identity, submitted.
Khan, A.R., Pecaric, J., Praljak, M., Varosanec, S., General Linear Inequalities and Positivity/ Higher order convexity, Monographs in inequalities 12, Element, Zagreb, 2017, pp. 269.
Khan, A.R., Pecaric, J., Praljak, M., Varosanec, S., Positivity of sums and integrals of n−convex functions via the Fink identity, submitted.
Khan, A.R., Pecaric, J.E., Varosanec, S., Popoviciu type characterization of positivity of sums and integrals for convex functions of higher order, J. Math. Inequal., 7(2013), no. 2, 195-212.
Matic, M., Pecaric, J., Ujevic, N., Some new Owstrowski-type bounds for the Cebysev functional and applications, Computer. Math. Appl., 39(2000), no. 3-4, 161-175.
Pecaric, J., On Jessenss inequality for convex functions, III, J. Math. Anal. Appl., 156(1991), 231-239.
Pecaric, J., Perusic, A., Smoljak, K., Generalizations of Steffensen’s inequality by Abel-Gontscharoff polynomial, Khayyam J. Math., 1(2015), no. 1, 45-61.
Pecaric, J., Praljak, M., Witkowski, A., Linear operator inequality for n-convex functions at a point, Math. Ineq. Appl., 18(2015), 1201-1217.
Pecaric, J., Proschan, F., Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
Popoviciu, T., Notes sur les fonctions convexes d’orde superieur III, Mathematica (Cluj), 16(1940), 74-86.
Popoviciu, T., Notes sur les fonctions convexes d’orde superieur IV, Disqusitiones Math., 1(1940), 163-171.
Popoviciu, T., Les Fonctions Convexes, Herman and Cie, Editeurs, Paris 1944.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.