Certain class of m-fold functions by applying Faber polynomial expansions
DOI:
https://doi.org/10.24193/subbmath.2021.3.07Keywords:
m-fold symmetric bi-univalent functions, coefficient estimates, Faber polynomial expansions.Abstract
In this paper, we introduce new class Σm(µ, λ, γ, β) of m-fold symmet- ric bi-univalent functions. Furthermore, we use the Faber polynomial expansions to find upper bounds for the general coefficients |amk+1|(k >= 2) of functions in the class Σm(µ, λ, γ, β). Moreover, we obtain estimates for the initial coefficients |am+1| and |a2m+1| for functions in this class. The results presented in this paper would generalize and improve some recent works.
Mathematics Subject Classification (2010): 30C45, 30C80.
References
Airault, H., Bouali, A., Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(2006), 179-222.
Airault, H., Ren, J., An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 26(2002), no. 5, 343-367.
Altinkaya, S., Yalc¸in, S., Coefficient bounds for two new subclasses of m-fold symmetric bi-univalent functions, Serdica Math. J., 42(2016), 175-186.
Bouali, A., Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, Bull. Sci. Math., 130(2006), no. 1, 49-70.
Brannan, D.A., Taha, T.S., On Some classes of bi-univalent functions, Stud. Univ. Babes-Bolyai Math., 31(1986), no. 2, 70-77.
Caglar, M., Orhan, H., Yagmur, N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(2013), no. 7, 1165-1171.
Duren, P.L. , Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
Eker, S.S., Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math., 40(2016), no. 3, 641-646.
Faber, G., Uber polynomische Entwickelungen, Math. Ann., 57(1903), no. 3, 389-408.
Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
Hamidi, S.G., Jahangiri, J.M., Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math., 25(2014), no. 7, Art. ID 1450064, 8 pages.
Jahangiri, J.M., Hamidi, S.G., Faber polynomial coefficient estimates for analytic bi-Bazlevic functions, Mat. Vesnik, 67(2015), no. 2, 123-129.
Jahangiri, J.M., Hamidi, S.G., Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560, 4 pages.
Koepf, W., Coefficients of symmetric functions of bounded boundary rotation, Proc. Amer. Math. Soc., 105(1989), no. 2, 324-329.
Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
Srivastava, H.M., Bansal, D., Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
Srivastava, H.M., Gaboury, S., Ghanim, F., Coefficient estimates for some general sub-classes of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706.
Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
Srivastava, H.M., Sivasubramanian, S., Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2014), 1-10.
Todorov, P.G., On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., 162(1991), no. 1, 268-276.
Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994.
Xu, Q.-H., Xiao, H.-G., Srivastava, H.M., A certain general subclass of analytic and bi- univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), no. 23, 11461-11465.
Zireh, A., Salehian, S., On the certain subclass of analytic and bi-univalent functions defined by convolution, Acta Univ. Apulensis Math. Inform., 44(2015), 9-19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.