Kantorovich type operators associated with Jain-Markov operators
DOI:
https://doi.org/10.24193/subbmath.2021.2.04Keywords:
Linear positive operator, Jain operator, modulus of smoothness, K-functional, Lipschitz function.Abstract
This note focuses on a sequence of linear positive operators of integral type in the sense of Kantorovich. The construction is based on a class of discrete operators representing a new variant of Jain operators. By our statements, we prove that the integral family turns out to be useful in approximating continuous signals defined on unbounded intervals. The main tools in obtaining these results are moduli of smoothness of first and second order, K-functional and Bohman-Korovkin criterion.
Mathematics Subject Classification (2010): 41A36, 41A25.
References
Abel, U., Agratini, O., Asymptotic behaviour of Jain operators, Numer. Algor., 71(2016), 553-565.
Agratini, O., A stop over Jain operators and their generalizations, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica, 56(2018), f. 2, 28-42.
Altomare, F., Korovkin-type theorems and approximation by positive linear operators, Surveys in Approximation Theory, 5(2010), 92-164.
Butzer, P.L., On the extensions of Bernstein polynomials to the infinite interval, Proc. Amer. Math. Soc., 5(1954), 547-553.
DeVore, R.A., Lorentz, G.G., Constructive Approximation, Grundlehren der mathematischen Wissenschaften, Vol. 303, Springer-Verlag, 1993.
Dhamija, M., Pratap, R., Deo, N., Approximation by Kantorovich form of modified Sz´asz-Mirakyan operators, Appl. Math. Comput., 317(2018), 109-120.
Dogru, O., Mohapatra, R.N., Orkcu, M., Approximation properties of generalized Jain operators, Filomat 30:9(2016), 2359-2366.
Jain, G.C., Approximation of functions by a new class of linear operators, J. Australian Math. Soc., 13(1972), no. 3, 271-276.
Jain, G.C., Pethe, S., On the generalizations of Bernstein and Sz´asz-Mirakjan operators, Nanta Math., 10(1977), 185-193.
Johnen, H., Inequalities connected with the moduli of smoothness, Mat. Vesnik, 9(24)(1972), 289-305.
Mirakjan, G.M., Approximation of functions with the aid of polynomials, (in Russian), Dokl. Akad. Nauk SSSR, 31(1941), 201-205.
Peetre, J., A theory of interpolation of normed spaces, Notas de Matematica, Rio de Janeiro, 39(1968), 1-86.
Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. USA, 60(1968), 1196-1200.
Szasz, O., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45(1950), 239-245.
Umar, S., Razi, Q., Approximation of functions by generalized Szasz operators, Commun. Fac. Sci. de l’Universite d’Ankara, Series A1: Mathematique, 34(1985), 45-52.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.