Theoretical and numerical considerations on Bratu-type problems

Authors

  • Adrian PETRUȘEL Babes-Bolyai University, Faculty of Mathematics and Computer Science Kogalniceanu Str. no. 1, 400084 Cluj-Napoca, Romania and Academy of Romanian Scientists Bucharest, Romania e-mail: petrusel@math.ubbcluj.ro https://orcid.org/0000-0002-5629-5667
  • Ioan A. RUS Babes-Bolyai University, Faculty of Mathematics and Computer Science Kogalniceanu Str. no. 1, 400084 Cluj-Napoca, Romania e-mail: iarus@math.ubbcluj.ro
  • Marcel Adrian ȘERBAN Babes-Bolyai University, Faculty of Mathematics and Computer Science Kogalniceanu Str. no. 1, 400084 Cluj-Napoca, Romania e-mail: mserban@math.ubbcluj.ro https://orcid.org/0000-0001-9222-7402

DOI:

https://doi.org/10.24193/subbmath.2021.1.03

Keywords:

Bratu problem, Bratu theorem, Bratu-type equation, Cauchy problem, Nicoletti problem, boundary value problem, Green function, integral equations with exponential nonlinearity, numerical aspects of Bratu's problem.

Abstract

In this paper we present an heuristic introduction to Bratu problem and we give some variants of Bratu's theorem (G. Bratu, Sur les equations integrales non lineaires, Bulletin Soc. Math. France, 42(1914), 113-142). Using the positivity of Green's function, the monotone iterations technique and the contraction principle, some generalizations of Bratu's result are also given. Numerical aspects are also considered.

Mathematics Subject Classification (2010): 34B18, 47H10, 65R20, 34B27, 45G10, 35K58.

References

Agarwal, R.P., Hodis, S., O'Regan, D., 500 Examples and Problems of Applied Differential Equations, Springer, 2019.

Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18(1976), no. 4, 620-709.

Amann, H., Supersolutions, monotone iterations and stability, J. Diff. Eq., 21(1976), 363-377.

Bailey, P., Shampine, L.F., Waltman, P., Existence and uniqueness of solution of the second order boundary value problem, Bull. Amer. Math. Soc., 72(1966), 96-98.

Bailey, P., Shampine, L.F., Waltman, P., Nonlinear Two Point Boundary Value Problems, Acad. Press, New York, 1968.

Bandle, C., Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, Arch. Rational Mech. Anal., 58(1975), 219-238.

Ben-Romdhane, M., Temimi, H., Baccouch, M., An iterative finite difference method for approximating the two-branched solution of Bratu's problem, Appl. Numerical Math., 139(2019), 62-76.

Bougoa, L., Exact solutions of a generalized Bratu equation, Romanian J. Physics, 62(2017), article no. 110, 1-5.

Boyd, J.P. Chebyshev polynomial expantions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput., 142(2003), 189-200.

Bratu, Gh., Sur certaines equations integrales nonlineaire, C.R. Acad. Sci. Paris, 150(1910), 896-899.

Bratu, Gh., Sur l'equation integrale exponentielle, C.R. Acad. Sci. Paris, 152(1911), 1048-1050.

Bratu, Gh., Sur les equations integrales nonlineaires, Bulletin de la Soc. Math. France, 42(1914), 113-142.

Buckmire, R. Application of a Mickens innite-difference scheme to the cylindrical Bratu-Gelfand problem, Numer. Methods Partial Diff. Equations, 20(2004), no. 3, 327-337.

Caglar, H., Caglar, N., Ozer, M., Anagnostopoulos, A.N., B-spline method for solving Bratu's problem, J. Comput. Math., 87(2010) no. 8, 1885-1891.

Chandrasekhar, S., An Introduction to the Study of Stellar Structure, Dover Publ., New York, 1957.

Cohen, N., Toledo Benavides, J.V., Exact solutions of Bratu and Liouville equations, Anais do CNMAC, 3(2010), 750-756.

Feng, X., He, Y., Meng, J., Application of homotopy perturbation method to the Bratu-type equations, Topological Meth. in Nonlinear Anal., 31(2008), 243-252.

Foias, C., Gussi, G., Poenaru, V., Despre problema polilocala la ecuatii diferentiale liniare de ordinul al doilea, Buletin Stiinti c, Sectiunea de Stiinte Matematice si Fizice, 7(1955), no. 3, 699-721.

Frank-Kamenetskii, D.A., Calculation of thermal explosion limits, Acta Phys., USSR, 10(1939), 365.

Frank-Kamenetskii, D.A., Diffusion and Heat Exchange in Chemical Kinetics, PrincetonUniv. Press, 1955.

Fujita, H., On the nonlinear equations ∆u+eᵘ = 0 and ∂v/∂t= ∆v+eᵛ, Bull. Amer. Math. Soc., 75(1969), 132-135.

Galaktionov, V.A., Vazquez, J.L., The problem of blow-up in nonlinear parabolic equations, Discrete and Continuous Dynamical Systems, 8(2002), no. 2, 399-433.

Gelfand, I.M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29(1963), 295-381 (Usp. Mat. Nauk,14(1959), no. 2, 87-158).

Hartman, P., Ordinary Differential Equations, Wiley New York, 1964.

Hirsch, M.W., The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11(1984), no. 1, 1-64.

Jacobsen, J., Schmitt, K., The Liouville-Bratu-Gelfand problem for radial operators, J. Diff. Eq., 184(2002), 283-298.

Joseph, D., Lundgren, Quasilinear Dirichlet problems driven by positive source, Arch. Rational Mech. Anal., 49(1973), 241-269.

Joseph, D., Sparrow, E.M., Nonlinear diffusion induced by nonlinear sources, Quarterly Appl. Math., 28(1970), no. 3, 327-342.

Kafri, H.Q., Khuri, S.A., Bratu's problem: A novel approach using fi xed point iterations and Green's functions, Computer Physics Communications, 198(2016), 97-104.

Keller, H.B., Existence theory for two point boundary value problems, Bull. Amer. Math. Soc., 72(1966), 728-731.

Keller, H.B., Cohen, D.S., Some positione problems suggested by nonlinear heat generation, J. Math. Mech., 16(1967), no. 12, 1361-1376.

Khuri, S.A., Louhichi, I., A novel Ishikawa-Green's fixed point scheme for the solution of BVPs, Appl. Math. Letters, 82(2018), 50-57.

Krasnoselskii, M.A., Positive Solutions of Operator Equations, Noordhof, 1964.

Kreith, K. PDE generalization of the Sturm comparison theorem, Memoirs Amer. Math. Soc., 48(1984), no 298, 31-46.

Laetsch, T., On the number of solutions of boundary value problems with convex non-linearities, J. Math. Anal. Appl., 35(1971), 389-404.

Lebovitz, N., Oscillation theory and the spectra of eigenvalues, in: Ordinary Differential Equations, http://people.cs.uchicago.edu/lebovitz/odes.html

Liouville, J., Sur l'equation aux differences partielles (d²logλ)/(dudv)±λ2a²= 0, J. Math. Pures Appl., 18(1853), 71-72.

Miller, K.S., Schier, M.M., Monotonic properties of the Green's function, Proc. Amer. Math. Soc., 3(1952), 848-956.

Pacurar, M., Rus, I.A., Some remarks on the notations and terminology in the ordered set theory, Creat. Math. Inf., 27(2018), no. 2, 191-195.

Petrusel, A., Rus, I.A., A class of functional-integral equations with applications to bilocal problem, in: Topics in Mathematical Analysis and Applications (T.M. Rassias, L. Toth - Eds.), Springer, 2014, 609-631.

Picard, E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., 6(1890), 145-210.

Picard, E., Sur l'application des methodes d'approximations successives a l'etude de certaines equations differentielles ordinaires, J. Math. Pures Appl., 9(1893), 217-272.

Picard, E., Sur certains exemples singuliers d'approximations successives, Comptes Rendus, 126(1898), 497-500.

Piccinini, L.C., Stampacchia, G., Vidossich, G., Ordinary Differential Equations in Rn, Springer, 1984.

Polyamin, A.D., Zaitsev, V.F., Handbook of Ordinary Differential Equations: Exact Solutions, Methods and Problems, CRC Press, Boca Raton, 2018.

Reid, W.T., Sturmian Theory for Ordinary Differential Equations, Springer, 1980.

Rus, I.A., Sur la positivite de la fonction de Green correspondante au problem bilocal, Glasnik Mat., 5(1970), 251-257.

Rus, I.A., Ecuatii diferentiale, ecuatii integrale si sisteme dinamice, Transilvania Press Cluj-Napoca, 1996.

Rus, I.A., Some variants of contraction principle, generalization and applications, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 3, 343-358.

Rus, I.A., Petrusel, A., Petrusel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

Syam, M.I., Hamdan, A., An effcient method for solving Bratu equations, Appl. Math. Comput., 176(2006), 704-713.

Wazwaz, A.M., Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput., 166(2005), 652-663.

Downloads

Published

2022-10-13

How to Cite

PETRUȘEL, A., RUS, I. A., & ȘERBAN, M. A. (2022). Theoretical and numerical considerations on Bratu-type problems. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 29–46. https://doi.org/10.24193/subbmath.2021.1.03

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.