Dimensionless wave numbers evolution of a three spans simply supported beam when the intermediate supports are moving along the whole beam

Autori

  • Zeno-Iosif PRAISACH Babeș-Bolyai University, Faculty of Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, Romania, zeno.praisach@ubbcluj.ro (*corresponding author) https://orcid.org/0000-0002-8613-8224
  • Dorel ARDELJAN Ph.D. Stud. Dorel Ardeljan, Babeș-Bolyai University, Faculty of Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, Romania, dorel.ardeljan@ubbcluj.ro
  • Constantin-Viorel PAȘCU Ph.D. Stud. Constantin-Viorel Pașcu, Babeș-Bolyai University, Faculty of Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa, Romania, constantin.pascu@ubbcluj.ro

DOI:

https://doi.org/10.24193/subbeng.2021.1.2

Cuvinte cheie:

natural frequency, dimensionless wave number, mode shape

Rezumat

Continuous beams simply supported with several intermediate supports are very common in engineering achievements everywhere. The paper shows the evolution of the dimensionless wave number in 3D format, respectively of the eigenfrequencies for a continuous beam with three openings when the intermediate supports take any position inside the beam. The frequency equation for calculating the dimensionless wave number is presented and the modal function is given with an example for the case where the eigenfrequency has the maximum value at fist vibration mode.

Referințe

Sule S., Nwofor T.C., Application of Matrix Iteration for Determining the Fundamental Frequency of Vibration of a Continuous Beam, International Journal of Engineering Reearch and Development, Vol. a(12), 2012, pp. 30-36.

Ebrahimi F., Advances in Vibration Analysis Research, Published by InTech, Croatia, 2011.

Khodabakhsh S., Rama B.B., Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions, Shock and Vibration, 18(5), 2011, pp. 697-707.

Ichikawa M., Miyakawa Y., Matsuda A., Vibration analysis of the continuous beam subjected to a moving mass, Journal of Sound and Vibration 230(3), 2000, pp. 493-506.

Gillich G.R., Praisach Z.I., Modal identification and damage detection in beam-like structures using the power spectrum and time-frequency analysis, Signal Processing, 96, Special Issue: SI, Part: A, 2014, pp. 29-44.

Mead D.J., Yaman Y., The harmonic response of uniform beams on multiple linear supports: A flexural wave analysis, Journal of Sound and Vibration, 141(3), 1990, pp. 465–484.

Ntakpe J.L., Praisach Z.I, Mituletu C.I., Gillich G.R., Muntean F., Natural frequency changes of two-span beams due to transverse cracks, Journal of Vibration Engineering & Technologies, ‏5(3), 2017, pp. 229-238.

Gillich G.R., Ntakpe J.L., Wahab M.A., Praisach Z.I., Mimis M.C., Damage detection in multi-span beams based on the analysis of frequency changes Journal of Physics: Conference Series 842 (1), 2017, 012033.

Gillich G.R., Praisach Z.I., Hamat C., Gillich N., Ntakpe J.L., Crack localization in L-shaped frames, Acoustics and Vibration of Mechanical Structures - AVMS-2017, 2018, pp. 315-322.

Ntakpe J.L., Gillich G.R., Mituletu I.C., Praisach Z.I., Gillich N., An Accurate Frequency Estimation Algorithm with Application in Modal Analysis. Romanian Journal of Acoustics & Vibration, 13(2), 2016, pp. 98-103.

Descărcări

Publicat

2021-11-09

Cum cităm

PRAISACH, Z.-I., ARDELJAN, D., & PAȘCU, C.-V. (2021). Dimensionless wave numbers evolution of a three spans simply supported beam when the intermediate supports are moving along the whole beam. Studia Universitatis Babeș-Bolyai Engineering, 66(1), 17–24. https://doi.org/10.24193/subbeng.2021.1.2

Număr

Secțiune

Articles

Cele mai citite articole ale aceluiași autor(i)

1 2 > >> 

Articole similare

1 2 3 4 > >> 

Puteți, de asemenea, începeți o căutare avansată de similaritate pentru acest articol.