Overexpression of HSFA4A and RAP2.12 transcription factors in Arabidopsis thaliana confers tolerance to various abiotic stresses
DOI:
https://doi.org/10.24193/subbbiol.2025.2.07Keywords:
abiotic stress tolerance, Arabidopsis, combined stress, heat shock factor, RAPAbstract
Transcription factors are part of stress-signaling pathways, controlling activation of stress-responsive target genes. Heat shock factors and ethylene response factors can regulate responses to extreme temperature, salinity, drought, heavy metals, oxidative damage and anoxia. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) is part of the mitogen-activated protein kinase signaling pathway and was previously shown to regulate responses to salt, oxidative and heat stresses as well as their combinations. The RELATED TO APETALA2.12 (RAP2.12) factor was shown to be involved in anoxia, oxidative and osmotic stresses, and to modulate sensitivity to abscisic acid (ABA). Here we show that overexpression of HSFA4A and RAP2.12 can increase the survival rate of Arabidopsis plants exposed to heat, salt or osmotic stresses and combinations of high temperature with salt or osmotic stresses. Moreover, overexpression of these factors improved photosynthetic activity in such adverse conditions. Photosynthetic performance of the hsfa4a and rap2.12-2 mutants was variable in plantlets stressed in sterile conditions and less affected in soil-grown mutants when exposed to drought stress. Our data clearly indicate that these factors are implicated in stress response control, although their precise function remains to be elucidated.
Article history: Received 18 February 2025; Revised 11 November 2025;
Accepted 15 November 2025; Available online 20 December 2025
References
Åkerfelt, M., Morimoto, R. & Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 11, 545–555. https://doi.org/10.1038/nrm2938
Anckar, J. & Sistonen, L. (2011). Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem. 80, 1 1089-1115. https://doi.org/10.1146/annurev-biochem-060809-095203
Andrási, N., Pettkó-Szandtner, A. & Szabados, L. (2021). Diversity of plant heat shock factors: regulation, interactions, and functions, J Exp Bot. 72, 5:1558–1575, https://doi.org/10.1093/jxb/eraa576
Andrási, N., Rigó, G., Zsigmond, L., Pérez-Salamó, I., Papdi, Cs., Klement, E., Pettkó-Szandtner, A., Baba, A. I., Ayaydin, F., Dasari, R., Cséplő, Á. & Szabados, L. (2019). The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. J Exp Bot. 70, 18:4903–4918, https://doi.org/10.1093/jxb/erz217
Baker, N.R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol. 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Barah, P., Naika, M.B.N., Jayavelu, N.D., Sowdhamini, R., Shameer, K. & Bones, A.M. (2016). Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res. 44, 7:3147–3164. https://doi.org/10.1093/nar/gkv1463
Cheng,M.C., Liao, PM., Kuo, WW. & Lin, TP. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162, 3, 1566–1582. https://doi.org/10.1104/pp.113.221911
Dey, S. & Vlot, A.C. (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Front. Plant Sci. 6, 640. https://doi.org/10.3389/fpls.2015.00640
Faragó, D., Zsigmond, L., Benyó, D., Alcazar, R., Rigó, G., Ayaydin, F. & Szabados, L. (2022). Small paraquat resistance proteins modulate paraquat and ABA responses and confer drought tolerance to overexpressing Arabidopsis plants. Plant, Cell & Environ. 45, 1985–2003. https://doi.org/10.1111/pce.14338
Georgii, E., Jin, M., Zhao, J. et al. (2017). Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biol. 17, 120. https://doi.org/10.1186/s12870-017-1062-y
Gibbs, D. J., Lee, S. C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G. W., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479, 415–418. https://doi.org/10.1038/nature10534
Giuntoli, B., & Perata, P. (2018). Group VII ethylene response factors in Arabidopsis: regulation and physiological roles. Plant Physiol. 176, 1143-1155. https://doi.org/10.1104/pp.17.01225
Gujjar, R.S., Akhtar, M. & Singh, M. (2014). Transcription factors in abiotic stress tolerance. Ind J Plant Physiol. 19, 306–316. https://doi.org/10.1007/s40502-014-0121-8
Huang, HY., Chang, KY. & Wu, SJ. (2018). High irradiance sensitive phenotype of Arabidopsis hit2/xpo1a mutant is caused in part by nuclear confinement of AtHsfA4a. Biol Plant. 62, 69–79. https://doi.org/10.1007/s10535-017-0753-4
Huang, J., Zhao, X., Bürger, M., Wang, Y. & Chory, J. (2021). Two interacting ethylene response factors regulate heat stress response. The Plant Cell 33, 2, 338–357. https://doi.org/10.1093/plcell/koaa026
Jiang, Z., Verhoeven, A., Li, Y., Geertsma, R., Sasidharan, R. & van Zanten, M. (2024). Deciphering acclimation to sublethal combined and sequential abiotic stresses in Arabidopsis thaliana. Plant Physiol. kiae581. https://doi.org/10.1093/plphys/kiae581
Kant, K., Rigó, G., Faragó, D. et al. (2024). Mutation in Arabidopsis mitochondrial pentatricopeptide repeat 40 gene affects tolerance to water deficit. Planta 259, 78. https://doi.org/10.1007/s00425-024-04354-w
Khan, S.A., Li, M.Z., Wang, S.M., & Yin, H.J. (2018). Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci. 19, (6), 1634. https://doi.org/10.3390/ijms19061634
Kosmacz, M., Parlanti, S., Schwarzländer, M., Kragler, F., Licausi, F. And Van Dongen, J.T. (2015). The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration. Plant Cell Environ. 38, 1094-1103. https://doi.org/10.1111/pce.12493
Licausi, F., Kosmacz, M., Weits, D. et al. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479, 419–422. https://doi.org/10.1038/nature10536
Licausi, F., Ohme-Takagi, M. & Perata, P. (2013). APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199, 639-649. https://doi.org/10.1111/nph.12291
Lin, KF., Tsai, MY., Lu, CA. et al. (2018). The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response. Bot Stud. 59, 15. https://doi.org/10.1186/s40529-018-0231-0
Lindemose, S., O'Shea, C., Jensen, M. K., & Skriver, K. (2013). Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci. 14, (3), 5842-5878. https://doi.org/10.3390/ijms14035842
Mareri, L., Parrotta, L. & Cai, G. (2022). Environmental stress and plants. Int. J. Mol. Sci. 23, 5416. https://doi.org/10.3390/ijms23105416
Nawaz, M., Sun, J., Shabbir, S., Khattak, W. A., Ren, G., Nie, X., Bo, Y., Javed, Q., Du, D. & Sonne, C. (2023). A review of plants strategies to resist biotic and abiotic environmental stressors, Sci Total Environ. 900, 165832, https://doi.org/10.1016/j.scitotenv.2023.165832.
Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K. and Shigeoka, S. (2006), Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547. https://doi.org/10.1111/j.1365-313X.2006.02889.x
Nover, L., Bharti, K., Döring, P., Mishra, SK., Ganguli, A. & Scharf, KL. (2001). Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress & Chaperon 6, 3,177. https://doi.org/10.1379/1466-1268(2001)006<0177:aathst>2.0.co;2
Papdi, C., Pérez-Salamó, I., Joseph, M.P., Giuntoli, B., Bögre, L., Koncz, C. & Szabados, L. (2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 82, 772-784. https://doi.org/10.1111/tpj.12848
Papdi, Cs., Ábrahám, E., Joseph, MP., Popescu, C., Koncz, Cs. & Szabados, L. (2008). Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol. 147, 528–542. https://doi.org/10.1104/pp.108.116897
Pérez-Salamó, I., Papdi, Cs., Rigó, G., Zsigmond, L., Vilela, B., Lumbreras,V., Nagy, I., Horváth, B., Domoki, M., Zsuzsa Darula, Medzihradszky, K., Bögre, L., Koncz, Cs. & Szabados, L. (2014). The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 165, 319–334. https://doi.org/10.1104/pp.114.237891
Rasmussen, S., Barah, P., Suarez-Rodriguez, M.C., Bressendorff, S., Friis, P., Costantino, P., Bones, A.M., Nielsen, H.B. & Mundy, J. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161, 1783–1794. https://doi.org/10.1104/pp.112.210773
Rivero, R.M., Mestre, T.C., Mittler, R., Rubio, F., Garcia-Sanchez, F. & Martinez, V. (2014). Stress combination in tomato plants. Plant Cell Environ. 37, 1059-1073. https://doi.org/10.1111/pce.12199
Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z. and Zhang, Z. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J. 12: 468-479. https://doi.org/10.1111/pbi.12153
Scharf, K. D., Berberich, T., Ebersberger, I., & Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BBA-Gene Regul Mech. 1819, 104-119. https://doi.org/10.1016/j.bbagrm.2011.10.002
Sewelam, N., Oshima, Y., Mitsuda, N. & Ohme-Takagi, M. (2014). Plant responses to multiple abiotic stresses. Plant Cell Environ. 37, 2024-2035. https://doi.org/10.1111/pce.12274
Shaar-Moshe, L., Blumwald, E. & Peleg, Z. (2017). Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol. 174, 421–434. https://doi.org/10.1104/pp.17.00030
Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. and Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol. 203, 32-43. https://doi.org/10.1111/nph.12797
Wu, Y., Li, X., Zhang, J., Zhao, H., Tan, S., Xu, W., Pan, J., Yang, F. & Pi, E. (2022). ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Front. Plant Sci. 13, 1042084. https://doi.org/10.3389/fpls.2022.1042084
Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R. and Mittler, R. (2021), The impact of multifactorial stress combination on plant growth and survival. New Phytol. 230, 1034-1048. https://doi.org/10.1111/nph.17232
Zang, D., Wang,J., Zhang, X., Liu, Z., & Wang, Y. (2019). Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression, J Exp Bot. 70, 19, 5355–5374. https://doi.org/10.1093/jxb/erz261
Zhang, H., Zhu, J., Gong, Z. et al. (2022). Abiotic stress responses in plants. Nat Rev Genet. 23, 104–119. https://doi.org/10.1038/s41576-021-00413-0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.