HYDRAULIC MODELING AND OPTIMIZATION OF THE OIL GATHERING NETWORK IN THE PERIPHERAL FIELD RAMA–RAA NORTH, HASSI MESSAOUD (ALGERIA)
DOI:
https://doi.org/10.24193/subbchem.2025.4.16Keywords:
crude oil, flow behavior, hydraulic modeling, PIPESIM, RAMA–RAA fields, pipeline optimizationAbstract
This study presents the hydraulic modeling and optimization of the RAMA and RAA crude oil gathering network in Algeria’s Hassi Messaoud oil field to enhance production efficiency and ensure stable field performance. A digital network model was developed using PIPESIM to simulate multiphase flow behavior from the wellheads to the Early Production Facility (EPF). The model calibration showed strong agreement between simulated and measured pressures, with deviations below 7%, confirming its reliability. Simulation results revealed several oversized flowlines with velocities below the recommended 1–5 m/s range and an undersized line (MFD BEKEN) exhibiting excessive velocities and pressure losses above 0.85 bar/km. To address these issues, the impact of integrating 11 new wells was evaluated, showing increase in line and manifold pressures. An optimization study was subsequently conducted by adjusting pipeline diameters and adding new flowlines in compliance with API design standards. The optimized configuration improved velocity distribution and reduced erosion risks, ensuring safer and more efficient network operation across the RAMA–RAA fields.
References
1. F. Souas; A. Safri; A. Benmounah; Pet. Sci. Technol., 2020, 38, 849-857.
2. S. Pattanaik; U. Behera; D. Das; P. K. Misra; J. Macromol. Sci. B, 2025, 64, 586-604.
3. H. A. Abbas; A. D. Manasrah; L. Carbognani; K. O. Sebakhy; M. E. H. E. Nokab; M. Hacini; N. N. Nassar; Pet. Sci. Technol., 2022, 40, 1279-1301.
4. F. Souas; A. Safri; A. S. E. Meddour; Studia UBB Chemia., 2025, 70, 221-234.
5. F. Souas; A. Safri; A. Gueciouer; Studia UBB Chemia., 2025, 70, 177–190.
6. A. S. E. Meddour; F. Souas; Ovidius Univ. Ann. Chem., 2022, 33, 64–70.
7. R. Kumar; S. Banerjee; A. Banik; T. K. Bandyopadhyay; T. K. Naiya; Pet. Sci. Technol., 2017, 35, 615-624.
8. S. K. Das; M. N. Biswas; A. K. Mitra; Chem. Eng. J., 1991, 45, 165–171.
9. J.L. Trallero; Oil-Water Flow Patterns in Horizontal Pipes; Ph.D. Dissertation, The University of Tulsa: Tulsa, OK, USA, 1995.
10. E. W. M. Hansen; Emerg. Technol. Fluids Struct. Fluid-Struc. Interact., 2001, 431, 23–29.
11. A. C. Bannwart; J. Pet. Sci. Eng., 2001, 32, 127–143.
12. T. K. Bandyopadyay; S. K. Das; J. Pet. Sci. Eng., 2007, 55, 156–166.
13. M. Rudman; H. M. Blackburn; Appl. Math. Model., 2004, 30, 1229–1248.
14. D. H. Beggs; J. P. Brill; J. Pet. Technol., 1973, 25, 607–617.
15. F. M. Sani; S. Huizinga; K.A. Esaklul; S. Nesic; Wear., 2019, 426, 620–636.
16. I. Ahmed; A. P. Iswara; S. Abbas; F. Q. Jamal; I. Ahmad; S. T. H. Shar; A. Naseem; Heliyon., 2024, 10, e35006.
17. M. Janadeleh; R. Ghamarpoor; N. K. Abbood; S. Hosseini; H. N. Al‑Saedi; A. Z. Hezave; Heliyon., 2024, 10, e36934.
18. A. E. Dukler; M. Wicks III; R. G. Cleveland; AIChE J., 1964, 10, 44–51.
19. O. Glaso; J. Pet. Technol., 1980, 32, 785–795.
20. G. E. Petrosky Jr; F. F. Farshad; SPE Pap., 1995, SPE-29468.
21. C. Beal; Trans. AIME., 1946, 165, 94-115.
22. K. S. Pedersen; Å. Fredenslund; P. L. Christensen; P. Thomassen; Chem. Eng. Sci., 1984, 39, 1011–1016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
