STUDY OF GEOMETRICAL SHAPING OF LINEAR CHAINED POLYMERS STABILIZED AS HELIXES

Authors

  • Lorentz JÄNTSCHI Department of Physics and Chemistry, Technical University; Babeş-Bolyai University, Institute for Doctoral Studies, Cluj-Napoca, Romania. Email: lorentz.jantschi@ubbcluj.ro. https://orcid.org/0000-0001-8524-743X
  • Sorana D. BOLBOACA Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. Email: sbolboaca@umfcluj.ro. https://orcid.org/0000-0002-2342-4311

Keywords:

linear chained polymer, helix radius, computational study

Abstract

The hypothesis of the study was that linear chained polymers have a natural chance to stabilize as a helix. Ten linear chained polymers, poly(ethylene glycol), polyethyleneimine, poly(lactic acid), poly(N-vinyl-pyrrolidone), poly(trans-1-butenylene), poly(1-chloro-trans-1-butenylene), poly(1-methyl-trans-1-butenylene), poly(1,4,4-trifluoro-trans-1-butenylene), polyacrylonitrile, polychlorotrifluoroethylene, were investigated. The structure of polymers was drawn and then optimized at Hartree-Fock, 6-31G* level of theory. The helix parameter was extracted from the optimized geometries using a home-made program. Seven out of ten polymers are likely to have a helical structure; the polymers with oxygen shown the highest residual error. The helix coefficient and rotation step per monomer were also calculated. The top three polymers according to rotation step per monomer behaved same as the one according to the helix coefficient. The top three non-increasing order was: polychlorotrifluoroethylene-Cl, polyacrylonitrile-N, and poly(lactic acid)-C-methyl. The smallest rotation step per monomer was associated with the smallest value of the helix coefficient (this being linearly related to rotation step per monomer). The highest helix radius was identified for poly(1-chloro-trans-1-butenylene), followed by poly(1-methyl-trans-1-butenylene) and poly(1,4,4-trifluoro-trans-1-butenylene).

References

"Macromolecule (polymer molecule)". "IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins [Last update: 2014-02-24; version: 2.3.3] [cited August 24, 2015]. ISBN 0-9678550-9-8. doi:10.1351/goldbook. DOI of macromolecule: doi:10.1351/goldbook.M03667.

W.P. Lin, S.J. Liu, T. Gong, Q. Zhao, W. Huang, Advanced Materials, 2014, 26(4), 570.

C. Tan, Z. Liu, W. Huang, H. Zhang, Chemical Society Reviews, 2015, 44(9), 2615.

S. Kalpakjian, S.R. Schmid, "Manufacturing Processes for Engineering Materials", 5th ed. 2008. Available from http://www3.nd.edu/~manufact/MPEM_pdf_files/Ch10.pdf.

J.R. Fried, "Polymer Science and Technology", 3rd Ed. Prentice Hall, Massachusetts, USA, 2014.

B.S. Mitchell, "An introduction to materials engineering and science for chemical and materials engineers", John Wiley & Sons, Inc., New Jersey, 2004.

C.M. Agrawal, J.L. Ong, M.R. Appleford, G. Mani, "Introduction to Biomaterials: Basic Theory with Engineering Applications", Cambridge University Press, New York, 2014.

M. Coronado, G. Montero, B. Valdez, M. Stoytcheva, A. Eliezer, C. García, H. Campbell, A. Pérez, Energy, 2014, 68, 364.

S.T. Montoya, P.A.P. Alzate, Y.M. Goez, C.E.E. Cuartas, P.G. Giraldo, “Evaluating the properties of silicone hoses for aesthetic surgery subjected to cycles of reuse,” 8th Pan American Health Care Exchanges Conference, PAHCE 2013; Medellin; Colombia; 29 April 2013 through 4 May 2013. Pan American Health Care Exchanges, PAHCE 2013: Article number 6568271.

W. Makiguchi, S. Kobayashi, K. Furukawa, H. Iida, Y. Furusho, E. Yashima, Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(8), 990.

Y. Takahashi, H. Tadokoro, Macromolecules, 1973, 6(5), 672.

R. Yang, X.R. Yang, D.F. Evans, W.A. Hendrickson, J. Baker, The Journal of Physical Chemistry, 1990, 94(15), 6123.

H. Dong, J.Y. Shu, N. Dube, Y. Ma, M.V. Tirrell, K.H. Downing, T. Xu, Journal of the American Chemical Society, 2012, 134(28), 11807.

Y. Chatani, T. Kobatake, H. Tadokoro, R. Tanaka, Macromolecules, 1982, 15(1), 170.

C. Lambert, F. Koch, S.F. Völker, A. Schmiedel, M. Holzapfel, A. Humeniuk, M.I.S. Röhr, R. Mitric, T. Brixner, Journal of the American Chemical Society, 2015, 137(24), 7851.

J.D. Watson, F.H.C. Crick, Nature, 1953, 171, 737.

N. Safaee, A.M. Noronha, D. Rodionov, G. Kozlov, C.J. Wilds, G.M. Sheldrick, K. Gehring, Angewandte Chemie International Edition, 2013, 52(39), 10370.

J.W. Prothero, Biophysical Journal, 1966, 6(3), 367.

R.D. Farahani, K. Chizari, D. Therriault, Nanoscale, 2014, 6(18), 10470.

Y. Yang, Y. Zhang, Z. Wei, Advanced Materials, 2013, 25(42), 6039.

F. Totsingan, V. Jain, M.M. Green, Artificial DNA, PNA & XNA, 2012, 3(2), 31.

T. Nakano, Y. Okamoto, Chemical Reviews, 2001, 101(12), 4013.

X. Ping, K. Jiang, S.-Y. Lee, J.-X. Cheng, X. Jin, Journal of Neurotrauma, 2014, 31(13), 1172.

A. Kolate, D. Baradia, S. Patil, I. Vhora, G. Kore, A. Misra, Journal of Controlled Release, 2014, 192, 67.

X. Zhao, H. Cui, W. Chen, Y. Wang, B. Cui, C. Sun, Z. Meng, G. Liu, PLoS ONE, 2014, 9(6), Article number e98919.

K. Kim, B. Bae, Y.J. Kang, J.-M. Nam, S. Kang, J.-H. Ryu, Biomacromolecules, 2013, 14(10), 3515.

M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Comprehensive Reviews in Food Science and Food Safety, 2010, 9(5), 552.

P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, Journal of Molecular Sciences, 2014, 15(3), 3640.

R. Mehta, V. Kumar, H. Bhunia, S.N. Upadhyay, Journal of Macromolecular Science Polymer Reviews, 2005, 45, 325.

C. Chen, G. Lv, C. Pan, M. Song, C. Wu, D. Guo, X. Wang, B. Chen, Z. Gu, Biomedical Materials, 2007, 2, L1.

F. Haaf, A. Sanner, F. Straub, Polymer Journal, 1985, 17, 143.

X. Liu, Y. Xu, Z. Wu, H. Chen, Macromolecular Bioscience, 2013, 13(2), 147.

R.B. Fox, "Glass transition temperature for selected polymers", In: Haynes, W.M. (Ed). "Handbook of Chemistry and Physics". CRC Press, USA, 2012.

L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, Journal of Materials Science, 2014, 49(2), 463.

D. Liu, H. Chen, P. Yin, N. Ji, G. Zong, R. Qu, Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(13), 2916.

J. Gardiner, Australian Journal of Chemistry, 2015, 68(1), 13.

J.C. Slater, Reviews of Modern Physics, 1963, 35(3), 484.

R. Ditchfield, W.J. Hehre, J.A. Pople, Journal of Chemical Physics, 1971, 54(2), 724.

Downloads

Published

2016-12-30

How to Cite

JÄNTSCHI, L. ., & BOLBOACA, S. D. . (2016). STUDY OF GEOMETRICAL SHAPING OF LINEAR CHAINED POLYMERS STABILIZED AS HELIXES. Studia Universitatis Babeș-Bolyai Chemia, 61(4), 123–136. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8384

Issue

Section

Articles

Similar Articles

<< < 38 39 40 41 42 43 44 45 46 > >> 

You may also start an advanced similarity search for this article.