MODELS OF MONOVALENT IONS DISSOLVED IN WATER

Authors

  • Lavinia L. PRUTEANU Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: pruteanulavinia@gmail.com. https://orcid.org/0000-0001-8277-1113
  • Lorentz JÄNTSCHI Department of Physics and Chemistry, Faculty of Engineering of Materials and Environment, Technical University; Doctoral School of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: lorentz.jantschi@ubbcluj.ro. https://orcid.org/0000-0001-8524-743X
  • Mihaela-Ligia UNGUREŞAN Department of Physics and Chemistry, Technical University, Cluj-Napoca, Romania. Email: mihaela.unguresan@chem.utcluj.ro. https://orcid.org/0000-0001-9193-6741
  • Sorana D. BOLBOACA Department of Medical Informatics and Biostatistics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. Email: sbolboaca@umfcluj.ro. https://orcid.org/0000-0002-2342-4311

Keywords:

ion-water cluster; monovalent ion; stabilization

Abstract

A computational study on water-ions clusters for six ions (NH4+, F-, Cl-, Li+, Na+, and K+) is described. Restricted Hartree-Fock method with 6-31G* basis set was used to optimize the investigated water-ion clusters. Stable ion-water clusters proved to form with four (NH4+·4H2O and Li+·4H2O), five (Cl-·5H2O and Na+·5H2O) and respectively six water molecules (F-·6H2O and K+·6H2O). The arrangement of water molecules around the investigated ions proved not be symmetrical. Furthermore, the investigation of the stability of dodecahedral cages constructed with the investigated ions showed a stable symmetry for O12N8H50, O12Li8H18, and O15K5H29.

References

K.T. Wikfeldt, Structure, Dynamics and Thermodynamics of Liquid Water: Insights from Molecular Simulations, Thesis for the Degree of Doctor of Philosophy in Theoretical Physics, Department of Physics, Stockholm University, Stockholm, 2011.

J. Siepmann, F. Siepmann, International Journal of Pharmaceutics, 2013, 453, 12.

T. Bartels-Rausch, V. Bergeron, J.H.E. Cartwright, R. Escribano, J.L. Finney, H. Grothe, P.J. Gutirrez, J. Haapala, W.F. Kuhs, J.B.C. Pettersson, S.D. Price, C.I. Sainz-Daz, D.J. Stokes, G. Strazzulla, E.S. Thomson, H. Trinks, N. Uras-Aytemiz, Reviews of Modern Physics, 2012, 84, 885.

V. Fuentes-Landete, C. Mitterdorfer, P.H. Handle, G.N. Ruiz, J. Bernard, A. Bogdan, M. Seidl, K. Amann-Winkel, J. Stern, S. Fuhrmann and T. Loerting, Crystalline and amorphous ices, Proceedings of the International School of Physics “Enrico Fermi”, Ed P.G. Debenedetti, M.A. Ricci and F. Bruni, IOS, Amsterdam, Bologna, 2015.

W.F. Kuhs, M.S. Lehmann, The structure of ice-Ih, Water Science Reviews 2. Cambridge University Press, 1986, pp. 1-66.

B.J. Murray, A.K. Bertram, Physical Chemistry Chemical Physics, 2006, 8, 186.

T.L. Malkin, B.J. Murray, A.V. Brukhno, J. Anwar, C.G. Salzmann, Proceedings of the National Academy of Sciences USA, 2012, 109, 1041.

Correction for Malkin et al., Proceedings of the National Academy of Sciences USA, 2012, 109, 4020.

E.D. Isaacs, A. Shukla, P.M. Platzman, D.R. Hamann, B. Barbiellini, C.A. Tulk, Physical Review Letters, 1999, 82, 600.

NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. Release 16a, August 2013, Editor: Russell D. Johnson III. Available at: http://cccbdb.nist.gov/ (http://cccbdb.nist.gov/alldata2.asp?casno=7732185)

R. Ludwig, Angewandte Chemie International Edition, 2001, 40, 1808.

R.P. Wayne, Chemistry of Atmospheres, Oxford University Press: Oxford, 1991.

A.V. Khakhalin, O.N. Gradoboeva, Y.N. Shirshov, Moscow University Physics Bulletin, 2012, 67, 536.

L. Pauling, The structure of water, In: Hydrogen bonding, Ed. D. Hadzi, H.W. Thompson, Pergamon Press Ltd, London, 1959, pp. 1-6.

D.J. Wales, M.P. Hodges, Chemical Physics Letters, 1998, 286, 65.

R.J. Cooper, T.M. Chang, E.R. Williams, The Journal of Physical Chemistry A, 2013, 117, 6571.

C.J. Burnham, M.K. Petersen, T.J.F. Day, S.S. Iyengar, G.A. Voth, J. Chemical Physics, 2006, 124, 024327.

S.L. Clegg, P. Brimblecombe, Journal of Physical Chemistry, 1989, 93, 7237.

Z. Latajka, S. Scheiner, Journal of Physical Chemistry, 1990, 94, 217.

A.E. Galashev, Journal of Physical Chemistry B, 2013, 7, 502.

D. Guerra, J. David, A. Restrepo, Journal of Computational Methods in Science and Engineering, 2014, 14, 93.

D. Laage, J.T. Hynes, Proceedings of the National Academy of Sciences USA, 2007, 104, 11167.

J. Cui, Y. Zhang, F. Zhao, J. Yang, G. Shen, Y. Xu, Progress in Natural Science, 2009, 19, 41.

J.T. O’Brien, E.R. Williams, Journal of the American Chemical Society, 2012, 134, 10228.

R. Fournier, Journal of Computational Methods in Sciences and Engineering, 2008, 8, 331.

X.-M. Li, L.-B. Zhang, L.-Z. Zhou, X.-H. Kong, Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2014, 34, 1805.

T.M. Di Palma, A. Bende, Chemical Physics Letters, 2013, 561, 18.

M.J. Ryding, K. Ruusuvuori, P.U. Andersson, A.S. Zatula, M.J. McGrath, T. Kurtén, I.K. Ortega, H. Vehkamäki, E. Uggerud, The Journal of Physical Chemistry A, 2012, 116, 4902.

P. Hvelplund, T. Kurtén, K. Støchkel, M.J. Ryding, S. Brøndsted Nielsen, E. Uggerud, The Journal of Physical Chemistry A, 2010, 114, 7301.

D.R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24, 89.

D.R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24, 111.

V.A. Fock, Zeitschrift für Physik, 1930, 61, 126.

V.A. Fock, Zeitschrift für Physik, 1930, 62, 795.

V.A. Fock, W. Hartree, Proceedings of the Royal Society of London A, 1935, 150(869), 9.

R. Ditchfield, W.J. Hehre, J.A. Pople. Journal of Chemical Physics, 1971, 54, 724.

W.J. Hehre, R. Ditchfield, J.A. Pople, Journal of Chemical Physics, 1972, 56, 2257.

P.C. Hariharan, J.A. Pople, Theoretica Chimica Acta, 1973, 28, 213.

A.V. Marenich, R.M. Olson, C.P. Kelly, C.J. Cramer, D.G. Truhlar, Journal of Chemical Theory and Computation, 2007, 3, 2011.

C.J. Cramer, D.G. Truhlar, Accounts of Chemical Research, 2008, 41(6), 760.

A.V. Marenich, C.J. Cramer, D.G. Truhlar, Journal of Chemical Theory and Computation, 2009, 5, 2447.

R. Twarock, N.E. Grayson, A. Taormina, Theoretical Computer Science, 2009, 410, 1440.

Downloads

Published

2023-10-23

How to Cite

PRUTEANU, L. L. ., JÄNTSCHI, L. ., UNGUREŞAN, M.-L. ., & BOLBOACA, S. D. . (2023). MODELS OF MONOVALENT IONS DISSOLVED IN WATER. Studia Universitatis Babeș-Bolyai Chemia, 61(1), 151–162. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8289

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.