INFLUENCE OF THE COBALT NITRATE:ETHYLENE GLYCOL MOLAR RATIO ON THE FORMATION OF CARBOXYLATE PRECURSORS AND COBALT OXIDES
DOI:
https://doi.org/10.24193/subbchem.2017.3.13Keywords:
carboxylate precursors, cobalt oxide, acido-basic titrationAbstract
This paper focuses on the obtaining of carboxylate precursors through the redox reaction of cobalt nitrate and ethylene glycol, in different stoechiometric ratios, as well as the decomposition of precursors into cobalt oxides. The influence of the NO3−:C2H6O2 stoichiometric ratio on the formation of the precursors is studied through thermal analysis, FTIR spectroscopy and acido-basic analysis (conductometric/potentiometric titrimetry). Phase analysis by XRD and FTIR of the powders obtained at the decomposition of the precursors at 400°C has evidenced the formation of CoO for a high NO3-:C2H6O2 synthesis ratio and of Co3O4 for a low NO3−:C2H6O2 ratio. The Scherrer equation and scanning electron microscopy (SEM) were used to determine the dimensions of the nanoparticles obtained.
References
S.M. Ansari, R.D. Bhor, K.R. Pai, D. Sen, S. Mazumder, K. Ghosh, Y.D. Kolekar, Applied Surface Science, 2017, 414, 171.
B.M. Mogudi, P. Ncube, R. Meijboom, Applied Catalysis B: Environmental, 2016, 198, 74.
M.M. Durano, A.H. Tamboli, H. Kim, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 355.
S. Harish, K. Silambarasan, G. Kalaiyarasan, A.V.N. Kumar, J. Joseph, Material Letters, 2016, 165, 115.
J.M. Xu, J. Zhang, B.B. Wang, F. Liu, Journal of Alloys and Compounds, 2015, 619, 361.
R.F. Klein Gunnewiek, C. Floriano Mendes, R.H. Goldschmidt Aliaga Kiminami, Advanced Powder Technology, 2016, 27, 1056.
A. Ashok, A. Kumar, R.R. Bhosale, M.A.H. Saleh, U.K. Ghosh, M. Al-Marri, F.A. Almomani, M.M. Khader, Ceramics International, 2016, 42, 12771.
S. Sun, X. Zhao, M. Yang, L. Ma, X. Shen, Nanomaterials, 2015, 5, 2335-2347.
H.K. Lin.,H.C Chiu,H.C.Tsai,S.H.Chien,C.B. Wang, Catalysis Letters 2003, 88, 3.
R.V. Narayan, V. Kanniah A. Dhathathreyan, Journal of Chemical Sciences, 2006, 118:2, 179.
A.M. Garrido Pedrosa, M.J.B. Souza, D.M.A. Melo, A.S. Araujo, L.B. Zinner, J.D.G. Fernandes, A.E. Martinelli, Solid State Sciences, 2003, 5, 725.
M. Pang, G. Long, S. Jiang, Y. Li, W. Han, B. Wang, X. Liu, Y. Xi, D. Wang, F. Xu, Chemical Engineering Journal, 2015, 280, 377.
M. Montazerozohori, A. Masoudiasl, S. Farokhiyani, S. Joohari, P. McArdle, Ultrasonic Sonochemistry, 2017, 38, 134.
F. Grillo, M.M. Natile, A. Glisenti, Applied Catalysis B: Enviromental, 2004, 48, 267.
Y. Zhan, C. Yin, W. Wang, G. Wang, Materials Letters, 2003, 57, 3402.
L. Zhang, D. Xue, C. Gao, Journal of Magnetism and Magnetic Materials, 2003, 267, 111.
J. Jiu, Y. Ge, X. Li, L. Nie, Materials Letters, 2002, 54, 260.
K. Vojisavljevic, S. Wicker, I. Can, A. Bencan, N. Barsan, B. Malic, Advanced Powder Technology, 2017, 28, 1118.
H. Yang, Y. Hu, X. Zhang, G. Qiu, Materials Letters, 2004, 58, 387.
Z.W. Yhao, Z.P. Guo, H.K.Liu, Journal of Power Sources, 2005, 147, 264.
C.Y. Su, W.J. Lan, C.Y. Chu, X.J. Liu, W.Y. Kao, C.H. Chen, Electrochimica Acta, 2016, 190, 588.
M. Stefanescu, T. Dippong, M. Stoia, O. Stefanescu, Journal of Thermal Analisys and Calorimetry, 2008, 94:2, 389.
K. Shalini, A.U. Mane, S.A. Shivashankar, M.Rajeswari, S.Choopun, Journal of Crystal Growth, 2001, 231, 242.
Joint Committee on Powder Diffraction Standards. International Center for Diffraction Data, 1999.
. E. Lima Jr., E.L. Winkler, D. Tobia, H.E. Troiani, R.D. Zysler, E. Agostinelli, D. Fiorani, Chemistry of Materials, 2012, 24:3, 512.
L. Wang, M. Lu, Y. Liu, J. Li, M. Liu, H. Li, Ceramic International, 2015 41, 4176.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.